[1]
J.A. Spittle, Columnar to equiaxed grain transition in as solidified alloys, International Materials Reviews, 51 (2006) 247-269.
DOI: 10.1179/174328006x102493
Google Scholar
[2]
J.S. Langer, Dynamics of dendritic pattern formation, Materials Science and Engineering, 65 (1984) 37-44.
Google Scholar
[3]
H. Nguyen-Thi, et al., Investigation of gravity effects on solidification of binary alloys with in situ X-ray radiography on earth and in microgravity environment, Journal of Physics: Conference Series, 327 (2011) 012012.
DOI: 10.1088/1742-6596/327/1/012012
Google Scholar
[4]
A. Bogno, et al., Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid-liquid interface and on solute distribution during the initial transient of solidification, Acta Materialia, 59 (2011).
DOI: 10.1016/j.actamat.2011.03.059
Google Scholar
[5]
G. Reinhart, et al., Investigation of Columnar-Equiaxed Transition and Equiaxed growth of Aluminium Based Alloys by X-Ray Radiography, Materials Science and Engineering A, 413-414 (2005) 384-388.
DOI: 10.1016/j.msea.2005.08.197
Google Scholar
[6]
G. Reinhart, et al., In-Situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al-3. 5 wt pct Ni alloys, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 39A (2008).
DOI: 10.1007/s11661-007-9449-2
Google Scholar
[7]
B. Drevet, et al., Solidification of Aluminum-Lithium Alloys near the Cell/Dendrite Transition - Influence of Solutal Convection, J. Crystal Growth, 218 (2000) 419-433.
DOI: 10.1016/s0022-0248(00)00567-4
Google Scholar
[8]
H. Nguyen Thi, et al., Directional Solidification of Al-1. 5wt% Ni alloys under diffusion transport in space and fluid flow localisation on Earth, J. of Crystal Growth, 281 (2005) 654-668.
DOI: 10.1016/j.jcrysgro.2005.04.061
Google Scholar
[9]
W. Bingbo, Unidirectional dendritic solidification under longitudinal resonant vibration, Acta metall. mater., 40 (1992) 2739-2751.
DOI: 10.1016/0956-7151(92)90344-e
Google Scholar
[10]
R. Caram, et al., Directional solidifiation of Pb-Sn eutectic with vibration, J. Cryst. Growth, 114 (1991) 249-254.
DOI: 10.1016/0022-0248(91)90698-5
Google Scholar
[11]
D.T.J. Hurle, R.W. Series, Use of a magnetic field in melt growth, North Holland, Amsterdam ed., (1994).
Google Scholar
[12]
P. Rudolph, Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale, J. Cryst. Growth, 310 (2008) 1298-1306.
DOI: 10.1016/j.jcrysgro.2007.11.036
Google Scholar
[13]
P.A. Davidson, Magnetohydrodynamics in materials processing, Annual Review of Fluid Mechanics, 31 (1999) 273-300.
Google Scholar
[14]
R. Moreau, Magnetohydrodynamics, Kluwer Publications, Dordrecht, The Netherlands, (1990).
Google Scholar
[15]
J.A. Shercliff, Thermoelectric Magnetohydrodynamics, J. Fluid Mech., 91 (1979) 231-251.
DOI: 10.1017/s0022112079000136
Google Scholar
[16]
P. Lehmann, et al., Modification of interdendritic convection in directional solidification by a uniform magnetic field, Acta Materialia, 46 (1998) 4067-4079.
DOI: 10.1016/s1359-6454(98)00064-0
Google Scholar
[17]
H. Nguyen-Thi, et al., On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys, Comptes Rendus Physique, 13 (2012) 237-245.
DOI: 10.1016/j.crhy.2011.11.010
Google Scholar
[18]
H. Nguyen Thi, et al., Preliminary in situ and real-time study of directional solidification of metallic alloys by X-ray imaging techniques, J. Phys. D: Appl. Phys., 36 (2003) A83-A86.
DOI: 10.1088/0022-3727/36/10a/317
Google Scholar
[19]
J. Wang, et al., Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field, Appl. Phys. Lett., 101 (2012).
Google Scholar
[20]
H. Nguyen Thi, et al., Tailoring of Dendritic Microstructure in Solidification Processing By Crucible Vibration, J. of Crystal Growth, 275 (2005) 1579-1584.
DOI: 10.1016/j.jcrysgro.2004.11.223
Google Scholar
[21]
S. Ganesan, D.R. Poirier, Densities of Aluminum-Rich Aluminum-Copper Alloys during Solidification, Metallurgical Transaction A, 18A (1987) 721-723.
DOI: 10.1007/bf02649490
Google Scholar