The Evolution of Microstructure and Texture during Thermomechanical Processing of Al-Mg-Si-Cu Alloy

Article Preview

Abstract:

In order to improve formability, it is practicable to control the texture through adjusting process parameters. This work describes the evolution of microstructure and texture during thermomechanical processing of Al-Mg-Si-Cu alloy. With the change of deformation conditions, both the microstructure and texture change dramatically. After hot rolling from 90 mm to 7.5 mm, H and E texture components in the surface layer become dominant due to non-uniform deformation. And then with the increasing of cold rolling deformation from 7.5 mm to 4.0 mm, the texture components gradually change from shear texture to typical fcc texture, i.e. Copper, S and Brass textures, and their intensities also increase. And these texture components transform to some uncommon texture components after intermediate annealing, including {013}<001>, {001}<130>, Goss texture, {556}<110> and {111}<110> texture, not as the typical recrystallization texture components. Continually giving a cold rolling deformation from 4.0 mm to 1.0 mm, not only Copper, S, Brass textures, but also Goss texture due to the lower deformation can be found in the alloy sheet. The high temperature solid solution treatment can result in the complete recrystallization and the formation of recrystallization texture, Cube, Goss and R texture, which results in the high formability of experimental alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

1141-1146

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.B. Burger, A.K. Gupta, P.W. Jeffrey, D.J. Lloyd, Microstructural control of aluminum sheet used in automotive applications, Mater. Charact. 35 (1995) 23-39.

DOI: 10.1016/1044-5803(95)00065-8

Google Scholar

[2] O. Engler, J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications-a review, Mater. Sci. Eng. A336 (2002) 249-262.

DOI: 10.1016/s0921-5093(01)01968-2

Google Scholar

[3] J. Hirsch, Automotive Trends in Aluminium-The European Perspective, Mater. Sci. Forum. 28 (2004) 15-23.

Google Scholar

[4] J. Sidor, A. Miroux, R. Petrov, L. Kestens, Microstructural and crystallographic aspects of conventional and asymmetric rolling processes, Acta Mater. 56 (2008) 2495-2507.

DOI: 10.1016/j.actamat.2008.01.042

Google Scholar

[5] J. Sidor, R. Petrov and L. Kestens, Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets, Mater. Sci. Eng. A528 (2010) 413-424.

DOI: 10.1016/j.msea.2010.09.023

Google Scholar

[6] J. Sidor, A. Miroux, R. Petrov, L. Kestens, Controlling the plastic anisotropy in asymmetrically rolled aluminium sheets, Philos. Mag. 88 (2008) 3779-3792.

DOI: 10.1080/14786430802064659

Google Scholar

[7] O. Engler, H.C. Kim, M.Y. Huh, Formation of {111} fibre texture in recrystallised aluminium sheet, Mater. Sci. Technol. 17 (2001) 75-86.

DOI: 10.1179/026708301101508990

Google Scholar

[8] H.O. Asbeck, H. Mecking, Influence of friction and geometry of deformation on texture inhomogeneities during rolling of Cu single crystals as an example, Mater. Sci. Eng. A34 (1978) 111-119.

DOI: 10.1016/0025-5416(78)90041-1

Google Scholar

[9] C.S. Lee, B.J. Duggan, A simple theory for the development of inhomogeneous rolling textures, Metall. Mater. Trans. 22A (1991) 2637-2643.

DOI: 10.1007/bf02851357

Google Scholar

[10] M.Y. Huh, Y.S. Cho, O. Engler, Effect of lubrication on the evolution of microstructure and texture during rolling and recrystallization of copper, Mater. Sci. Eng. A247 (1998) 152-164.

DOI: 10.1016/s0921-5093(97)00772-7

Google Scholar

[11] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, second ed., Pergamon, Oxford, (2004).

Google Scholar

[12] O. Engler, K. Lücke, Mechanisms of recrystallization texture formation in aluminium alloys, Scripta Metall. Mater. 27 (1992) 1527-1532.

DOI: 10.1016/0956-716x(92)90139-6

Google Scholar

[13] O. Engler, Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis, Mater. Sci. Technol. 12 (1996) 859-872.

DOI: 10.1179/mst.1996.12.10.859

Google Scholar

[14] D. D. Roger, Recrystallization and texture, Prog. Mater. Sci. 42 (1997) 39-58.

Google Scholar

[15] W. Truszkowski, J. Krol, B. Major, Inhomogeneity of rolling texture in fcc metals, Metall. Mater. Trans. 11A (1980) 749-758.

DOI: 10.1007/bf02661204

Google Scholar

[16] X. M. Zhang, H. H. Jiang, Y. Q. Xiao, Influence of lubricants on deformation textures in high purity Al, The Chinese Journal of Nonferrous Metals. 11 (2001) 785-790.

Google Scholar

[17] H. Inoue, T. Takasugi, Texture Control for improving deep drawability in rolled and annealed aluminum alloy sheets, Mater Trans. 48 (2007) 2014-(2022).

DOI: 10.2320/matertrans.l-mra2007871

Google Scholar

[18] Y.S. Liu, S.B. Kang, H.S. Ko, Texture and plastic anisotropy of Al-Mg-0. 3Cu-1. 0Zn alloys, Scripta Mater. 37 (1997) 411-417.

DOI: 10.1016/s1359-6462(97)00102-4

Google Scholar

[19] H.E. Vatne, O. Engler, E. Nes, Influence of particles on recrystallisation textures and microstructures of aluminium alloy 3103, Mater. Sci. Technol. 13 (1997) 93-102.

DOI: 10.1179/mst.1997.13.2.93

Google Scholar

[20] O. Engler, H.E. Vatne, E. Nes, The roles of oriented nucleation and oriented growth on recrystallization texture in commercial purity aluminium, Mater. Sci. Eng. A205 (1996) 187-198.

DOI: 10.1016/0921-5093(95)09879-8

Google Scholar