Synthesis and Characterization of (3-Aminopropyl)Triethoxysilane-Modified Epitaxial Graphene

Article Preview

Abstract:

Electrochemical immunosensor devices comprise of an antibody immobilised onto a semiconducting or conducting substrate. The use of epitaxial graphene in immunosensors allows for the detection of an antigen specifically bound to the immobilised antibody by monitoring the current modulation of lithographically fabricated graphene channel devices. Multilayer epitaxial graphene (MEG) was produced on semi-insulating 4H-SiC(0001) substrates by annealing at 1700°C at 1x 10-5 mbar using a graphite cap. Thickness and morphology of the graphene was studied using Raman spectroscopy, XPS, AFM, and SEM. Selective areas of graphene were targeted for modification by adding a protective window of PMMA. In order to immobilise the antibody to the graphene substrate, an amine-terminated surface is required. (3-aminopropyl) triethoxysilane (APTES), is used to achieve amine termination, which is itself bound to a hydroxyliated graphene surface. Hydroxylation was achieved using Fenton chemistry and changes in surface hydrophobicity are confirmed using contact angle measurements. Attachment of APTES to the hydroxyl terminated graphene channel was confirmed using cyclic voltammetry (CV), XPS, and Raman spectroscopy. This functionalization method can be used to attach any antibody to the graphene substrate that can bind to an amine group. This platform is therefore easily adaptable for the fabrication of a range of immunosensor devices for the detection of different biomarkers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-102

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Berger, C., Ruan, M., Palmer, J., Hankinson, J., Hu, Y., Guo, Z., Dong, R., Conrad, E. H., & De Heer, W. A. (2011), ECS Transactions 41, 43-55.

DOI: 10.1149/1.3633284

Google Scholar

[2] Lara-Avila, S., Kalaboukhov, A., Paolillo, S., Syväjärvi, M., Yakimova, R., Fal'ko, V., Tzalenchuk, A., & Kubatkin, S. (2009), arXiv preprint arXiv: 0909. 1193.

DOI: 10.1038/nnano.2009.474

Google Scholar

[3] Ang, P. K., Chen, W., Wee, A. T. S., & Loh, K. P. (2008), Journal of the American Chemical Society 130, 14392-14393.

Google Scholar

[4] Guy, O. J., Burwell, G., Tehrani, Z., Castaing, A., Walker, K. A., & Doak, S. (2012), 711, 246-252.

DOI: 10.4028/www.scientific.net/msf.711.246

Google Scholar

[5] Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Hobza, P., Zboril, R., & Kim, K. S. (2012), Chemical Reviews 112, 6156-6214.

DOI: 10.1021/cr3000412

Google Scholar

[6] Coletti, C., Riedl, C., Lee, D., Krauss, B., Patthey, L., von Klitzing, K., Smet, J., & Starke, U. (2010), Physical Review B 81, 235401.

DOI: 10.1103/physrevb.81.235401

Google Scholar

[7] Boukhvalov, D. (2011), Nanotechnology 22, 055708.

Google Scholar

[8] De Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M. L., & others (2007), Solid State Communications 143, 92-100.

DOI: 10.1016/j.ssc.2007.04.023

Google Scholar

[9] Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B. N., Naud, C., Mallet, P., Veuillen, J. Y., Berger, C., Conrad, E., & others (2007), Physical review letters 99, 126805.

DOI: 10.1103/physrevlett.99.126805

Google Scholar

[10] Camara, N., Huntzinger, J. R., Rius, G., Tiberj, A., Mestres, N., Pérez-Murano, F., Godignon, P., & Camassel, J. (2009), Physical Review B 80, 125410.

DOI: 10.4028/www.scientific.net/msf.615-617.203

Google Scholar

[11] Luppa, P. B., Sokoll, L. J., & Chan, D. W. (2001), Clinica chimica acta; international journal of clinical chemistry 314, 1.

Google Scholar

[12] Skládal, P. (1997), Electroanalysis 9, 737-745.

Google Scholar

[13] Rhodes, D. R., Sanda, M. G., Otte, A. P., Chinnaiyan, A. M., & Rubin, M. A. (2003), Journal of the National Cancer Institute 95, 661-668.

Google Scholar

[14] Orlandi, F., Rossi, C., Allegra, A., Krantz, D., Hallahan, T., Orlandi, E., & Macri, J. (2002), Prenatal diagnosis 22, 718-721.

DOI: 10.1002/pd.390

Google Scholar

[15] Chiou, C. C., Chang, P. Y., Chan, E. C., Wu, T. L., Tsao, K. C., & Wu, J. T. (2003), Clinica chimica acta 334, 87-94.

Google Scholar

[16] Niyogi, S., Bekyarova, E., Itkis, M. E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C. N., Deheer, W. A., & others (2010), Nano letters.

DOI: 10.1021/nl1021128

Google Scholar

[17] Bindoli, A., Fukuto, J. M., & Forman, H. J. (2008), Antioxidants \& redox signaling 10, 1549-1564.

DOI: 10.1089/ars.2008.2063

Google Scholar

[18] Kathi, J. & Rhee, K. (2008), Journal of Materials Science 43, 33-37.

Google Scholar

[19] Halliwell, C. M. & Cass, A. E. (2001), Analytical chemistry 73, 2476-2483.

Google Scholar

[20] Camara, N., Tiberj, A., Jouault, B., Caboni, A., Jabakhanji, B., Mestres, N., Godignon, P., & Camassel, J. (2010), Journal of Physics D: Applied Physics 43, 374011.

DOI: 10.1088/0022-3727/43/37/374011

Google Scholar

[21] Bradley, R. H., Cassity, K., Andrews, R., Meier, M., Osbeck, S., Andreu, A., Johnston, C., & Crossley, A. (2012), Applied Surface Science.

DOI: 10.1016/j.apsusc.2012.01.008

Google Scholar

[22] Seah, M. & Dench, W. (1979), Surface and interface analysis 1, 2-11.

Google Scholar

[23] Jung, N., Kim, N., Jockusch, S., Turro, N. J., Kim, P., & Brus, L. (2009), Nano letters 9, 4133-4137.

DOI: 10.1021/nl902362q

Google Scholar

[24] Riegel, B., Blittersdorf, S., Kiefer, W., Hofacker, S., Müller, M., & Schottner, G. (1998), I. Journal of non-crystalline solids 226, 76-84.

DOI: 10.1016/s0022-3093(97)00487-0

Google Scholar

[25] Fang, M., Wang, K., Lu, H., Yang, Y., & Nutt, S. (2009), Journal of Materials Chemistry 19, 7098-7105.

Google Scholar

[26] Huang, P., Zhu, H., Jing, L., Zhao, Y., & Gao, X. (2011), ACS nano 5, 7945-7949.

Google Scholar

[27] Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., & Car, R. (2008), Nano Letters 8, 36-41.

Google Scholar

[28] Collyer, S. D., Davis, F., Lucke, A., Stirling, C. J., & Higson, S. P. (2003), Journal of Electroanalytical Chemistry 549, 119-127.

Google Scholar