Ultrahigh Purity Copper Alloy Target Used Innanoscale ULSI Interconnects

Article Preview

Abstract:

Current ULSI circuits have features with dimensions in the nanoscale region. As the critical dimension shrinks, Cu BEOL systems face reliability impacts. Alloying has been proved to be a promising technique to retard grain boundary electro-migration (EM). In this paper, dilute Cu Alloys such as Cu-Al, Cu-Mn for dual-damascene interconnect applications have been investigated. The alloy chosen principle for nanoscale interconnects has been discussed. The ultrahigh purity copper alloy target properties including purity, alloy composition, grain size and sputtering performance were investigated, to lay the foundation for the application of the large-size ultrahigh purity copper alloy target used for 300mm wafer fabrication. The relationships between deposited film behaviors and sputtering target properties in some applications were also discussed. In order to acquire high quality thin film, the properties of sputtering target such as alloy composition homogeneity, grain size and uniformity et al. have to be well controlled by proper fabrication techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-29

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.P. Murarka., Multilevel interconnections for ULSI and GSI era, Mater. Sci. Eng. 19(1997) 87-151.

DOI: 10.1016/s0927-796x(97)00002-8

Google Scholar

[2] M. Hansan, J.F. Rohan., Cu electrodeposition from methanesulfonate electrolytes for ULSI and MEMS applications J. Electrochem. Soc. 157(2010) D278-D282.

DOI: 10.1149/1.3332729

Google Scholar

[3] K.N. Tu., Recent advances on electromigration in very-largescale-integration of interconnects, J. Appl. Phys. 94(2003) 5451-5473.

DOI: 10.1063/1.1611263

Google Scholar

[4] C.C. Yang, P. Flaitz etc, Co capping layers for Cu/low-k interconnects, Microelectron. Eng. 92(2012) 79-82.

Google Scholar

[5] H. Kim, T. Koseki etc, Cu wettability and diffusion barrier property of Ru thin film for Cu metallization, J. Electrochem. Soc. 152(2005) G594- G600.

DOI: 10.1149/1.1939353

Google Scholar

[6] L. Zhang, M. Kraatz etc, in Proceedings of the IEEE 2010 International Interconnect Technology Conference IITC, (2010) 1.

Google Scholar

[7] B. Zhao, T. Momose, Y. Shimogaki., Deposition of Cu–Ag alloy film by supercritical fluid deposition, Jpn. J. Appl. Phys. 45(2006) L1296-L1299.

DOI: 10.1143/jjap.45.l1296

Google Scholar

[10] Hino, M., Nagasaka T. and Takehama, R., Activity measurement of the constituents in liquid Cu-Mg and Cu-Ca alloys with mass spectrometry, Metall. Mater. Trans. 31B (2000) 927.

DOI: 10.1007/s11663-000-0069-0

Google Scholar

[11] K. Lewin et al., Thermodynamic study of the Cu-Mn system, Scan. J. Metall. 22(1993) 310.

Google Scholar

[12] Jacob, K. T.; Priya, S. and Iseda, Y., Thermodynamic study of the Cu-Mn system, Z. Metallkd. 91(2000) 594.

Google Scholar

[13] Oyamada, H., Nagasaka, T. and Hino, M., Activity measurement of the constituents in liquid Cu-Al alloy with mass-spectrometry, Mater. Trans. Vol. 12(1998), 1225.

DOI: 10.2320/matertrans1989.39.1225

Google Scholar

[14] Witusiewicz, V, Arpshofen, I and Sommer, F., Thermodynamics of liquid Cu-Si and Cu-Zr alloys, Z. Metallkd. 91(2000) 594.

DOI: 10.1016/s0040-6031(00)00502-5

Google Scholar

[15] Katayama, I., Shimatani, H. and Kouzuka, Z., Thermodynamic Study of Solid Cu-Ni and Ni-Mo Alloys by E. M. F. Measurements using the solid electrolyte, J. Jpn. Inst. Metall. 37(1973) 509.

DOI: 10.2320/jinstmet1952.37.5_509

Google Scholar

[16] Azakami T., Yazawa. A., Activity measurements of liquid copper binary alloys, Can. Metall. Quart. 15(1976) 111.

DOI: 10.1179/cmq.1976.15.2.111

Google Scholar

[17] Koike, J. and Wada, M., Activity measurements of liquid copper binary alloys, Appl. Phys. Lett. 87(2005) 041911.

Google Scholar

[18] Koike. J., Haneda. M. etc, Activity measurements of liquid copper binary alloys, J. Appl. Phys. 102(2007) 043527.

Google Scholar

[19] J. Iijima, M. Haneda, J. Koike, Growth Behavior of Self-Formed Barrier Using Cu-Mn Alloys at 350 to 600 °C, IEEE. 6(2006) 155-157.

DOI: 10.1109/iitc.2006.1648675

Google Scholar

[20] Usui, T., Nasu, H. etc, Highly reliable copper dual-damascene interconnects with self-formed MnSixOy barrier Layer, IEEE Trans Electron Devices. 53(2006) 2492.

DOI: 10.1109/ted.2006.882046

Google Scholar

[21] Peijun Ding, Tony Chiang etc, U.S. Patent 0, 034, 126. (2001).

Google Scholar

[22] W.A. Lanford, P.J. Ding etc, Low-temperature Passivation of Copper by Doping With Al or Mg, Thinsolid films. 262 (1995) 234-241.

DOI: 10.1016/0040-6090(95)05837-0

Google Scholar

[23] Vladimir M. Segal, Wuwen Yi etc, U.S. Patent 0, 072, 009. (2004).

Google Scholar