Understanding of the Growth Mechanism Leading to Twin Boundary Elimination during 3C-SiC Heteroepitaxy on α-SiC Substrate by CVD

Article Preview

Abstract:

Starting from the previously demonstrated twin-free 3C-SiC growth on 4H-SiC when using Ge pre-deposition treatment, this work focuses on the understanding of the growth mechanism that stands behind this result. Toward this end, short growth experiments were performed to allow the investigation of the nucleation stage. Based on the experimental observations, a mechanism is proposed which involves a Ge-induced transient homoepitaxial growth step followed by 3C nucleation when large terraces are formed by step faceting. Lateral expansion of the 3C islands leads to orientation selection and twin boundary elimination. Similar results can be obtained when applying a Si-based pre-deposition treatment so that the crucial transient homoepitaxial step is promoted in fact by the presence of a liquid phase itself, no by its chemical nature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

209-212

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nishino, T. Kimoto, H. Matsunami, Japanese Journal of Applied Physics, 36 (1997) 5202.

Google Scholar

[2] X. Li, H. Jacobson, A. Boulle, D. Chaussende, A. Henry, ECS Journal of Solid State Science and Technology, 3 (2014) P75-P81.

DOI: 10.1149/2.012404jss

Google Scholar

[3] M. Soueidan, G. Ferro, Advanced Functional Material, 16 (2006) 975-979.

Google Scholar

[4] T. Ujihara, K. Seki, R. Tanaka, S. Kozawa, Alexander, K. Morimoto, K. Sasaki, Y. Takeda, Journal of Crystal Growth, 318 (2011) 389-393.

DOI: 10.1016/j.jcrysgro.2010.10.148

Google Scholar

[5] P.G. Neudeck, A.J. Trunek, D.J. Spry, J.A. Powell, H. Du, M. Skowronski, X.R. Huang, M. Dudley, Chemical Vapor Deposition, 12 (2006) 531-540.

DOI: 10.1002/cvde.200506460

Google Scholar

[6] K. Alassaad, V. Souliere, B. Doisneau, F. Cauwet, H. Peyre, D. Carole, D. Chaussende, G. Ferro, Mater. Sci. Forum 778-780 (2014) 187-192.

DOI: 10.4028/www.scientific.net/msf.778-780.187

Google Scholar

[7] K. Alassaad, V. Soulière, F. Cauwet, H. Peyre, D. Carole, P. Kwasnicki, S. Juillaguet, T. Kups, J. Pezoldt, G. Ferro, Acta Materialia, 75 (2014) 219-226.

DOI: 10.1016/j.actamat.2014.04.057

Google Scholar

[8] D. Chaussende, P. Chaudouet, L. Auvray, M. Pons, R. Madar, Material Science Forum, 457-460 (2004) 387.

Google Scholar

[9] L. Latu-Romain, D. Chaussende, M. Pons, Crystal Growth and Design, 6 (2006) 2788-2794.

DOI: 10.1021/cg060420l

Google Scholar

[10] M. Soueidan, G. Ferro, B. Nsouli, F. Cauwet, J. Dazord, G. Younes, Y. Monteil, Materials Science and Engineering: B, 130 (2006) 66-72.

DOI: 10.1016/j.mseb.2006.02.052

Google Scholar

[11] Z.Y. Xie, J.H. Edgar, B.K. Burkland, J.T. George, J. Chaudhuri, Journal of Crystal Growth, 224 (2001) 235.

Google Scholar