Temperature Dependence of 4H-SiC Ionization Rates Using Optical Beam Induced Current

Article Preview

Abstract:

The behavior of 4H-SiC power devices in severe environment with varying temperature is a key characteristic indicating their reliability. This paper shows the dependence of the ionization rates of 4H-SiC with respect to temperature. Optical Beam Induced Current (OBIC) measurements have been performed on PN junctions to determine the multiplication coefficient for temperature varying between 100 and 450K. That allows extracting the ionization rates by fitting the curves of multiplication coefficient.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

223-228

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A-O. Konstantinov, Q. Wahab, N. Nordell and U. Lindefelt, Materials Science Forum, vols. 264-268, 513 (1998).

DOI: 10.4028/www.scientific.net/msf.264-268.513

Google Scholar

[2] R. Raghunathan and B-J. Baliga, Solid State Electronics, vol. 43, 199 (1999).

Google Scholar

[3] D-M. Nguyen, C. Raynaud, M. Lazar, G. Pâques, S. Scharnholz, N. Dheilly, D. Tournier and D. Planson, Materials Science Forum, vols. 717-720, 545 (2012).

DOI: 10.4028/www.scientific.net/msf.717-720.545

Google Scholar

[4] W. Loh, B. K. Ng, J. S. Ng, S. I. Soloviev, H. Y. Cha, P. M. Sandvik, C. M. Johnson and J. P. R David, IEEE Transactions on electron devices, vol. 55, no. 8 (2008).

DOI: 10.1109/ted.2008.926679

Google Scholar

[5] T. Hatakeyama, T. Watanabe, T. Shinohe, K. Kojima, K. Arai, and N. Sano, Applied Physics Letters, vol. 85, n°. 8, pp.1380-1382, (2004).

DOI: 10.1063/1.1784520

Google Scholar

[6] T. Flohr and R. Helbig, Journal of Applied physics, vol. 66, no. 7, p.3060 (1989).

Google Scholar

[7] H. Hamad, P. Bevilacqua, C. Raynaud and D. Planson, 10th Conference on Ph. D. Research In Microelectronics and Electronics PRIME, (2014).

DOI: 10.1109/prime.2014.6872761

Google Scholar

[8] P. A. Wolff, Physical Review, vol. 95, no. 6, p.1415 (1954).

Google Scholar

[9] W. Shockley, Solid State Electronics, vol. 2, no. 1, p.35 (1961).

Google Scholar

[10] A. G. Chynoweth, Journal of Applied Physics, vol. 31, no. 7, p.1161 (1960).

Google Scholar

[11] C. Raynaud, D-M. Nguyen, N. Dheilly, D. Tournier, P. Brosselard, M. Lazar and D. Planson. Physica status solidi A, vol. 206, n°10 (2009) pp.2273-2283.

DOI: 10.1002/pssa.200825183

Google Scholar

[12] M. Lazar, F. Jomard, D-M. Nguyen, C. Raynaud, G. Pâques, S. Scharnholz, D. Tournier, D. Planson, Materials Science Forum, vols. 717-720, 885 (2012).

DOI: 10.4028/www.scientific.net/msf.717-720.885

Google Scholar

[13] C. A. Lee R. A. Logan, R. L. Batdorf, J. J. Kleimack and W. Wiegmann, Physical Review, vol. 134, p. A761 (1964).

DOI: 10.1103/physrev.134.a761

Google Scholar

[14] C. R. Crowell and S. M. Sze, Applied physics letter, vol. 9, p.242 (1966).

Google Scholar

[15] H. Niwa, J. Suda and T. Kimoto, Materials Science Forum, vol 778-780, p.461 (2014).

Google Scholar