[1]
Energy Information Administration. Annual Energy Review; U.S. Department of Energy, (2008).
Google Scholar
[2]
S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS Nano, 4 (2010) 1259–1278.
Google Scholar
[3]
J. L. Cohon, The Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use; National Academies Press 2009, ISBN-10: 0-309-14640-2.
DOI: 10.1289/ehp.119-a138
Google Scholar
[4]
http: /cdiac. ornl. gov/GCP/carbonbudget/2013.
Google Scholar
[5]
Y. Yuan, L. Ruan, J. Barber, J. Loo and C. Xue, Energy Environ. Sci., 7 (2014) 3934-3951.
Google Scholar
[6]
N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. USA, 103 (2006) 15729-15735.
Google Scholar
[7]
P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber and T. E. Muller, Energy Environ. Sci. 5 (2012) 7281-7305.
DOI: 10.1039/c2ee03403d
Google Scholar
[8]
http: /fossil. energy. gov/sequestration/geologic/index. html, U.S. Department of Energy.
Google Scholar
[9]
D. Chen, X. Zhang and A. F. Lee, J. Mater. Chem. A, 3 (2015) 14487-14516.
Google Scholar
[10]
S. Navalon, A. Dhakshinamoorthy, M. Alvaro and H. Garcia, ChemSusChem, 6 (2013) 562 – 577.
Google Scholar
[11]
E.V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal and J. Perez-Ramırez, Energy Environ. Sci., 6 (2013) 3112-3119.
Google Scholar
[12]
S. Das and W. M. A. W. Daud, RSC Adv., 4 (2014) 20856-20893.
Google Scholar
[13]
S. Protti, A. Albini and N. Serpone, Phys. C hem. Chem. Phys., 16 (2014) 19790—19827.
Google Scholar
[14]
M. Halmann, Nature, 275 (1978) 115-116.
Google Scholar
[15]
T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature, 277 (1979) 637-638.
Google Scholar
[16]
B. R. Eggins, J. T. S. Irvine, E. P. Murphy and J. Grimshaw, J. Chem. Soc. Chem. Commun., 90 (1988) 1123- 1124.
Google Scholar
[17]
A. J. Morris, G. J. Meyer and E. Fujita, Acc. Chem. Res., 42 (2009) 1983-(1994).
Google Scholar
[18]
M. Tahir and N. S. Amin, Energy Convers Manage, 76 (2013) 194–214.
Google Scholar
[19]
K. Kavita, C. Rubina and R. L. Shawnee, Ind. Eng. Chem. Res., 43 (2004) 7683–7696.
Google Scholar
[20]
H. D. Lasa, B. Serrano, M. Salaices, Photocatal. Reac. Eng. New York: Springer; (2005).
Google Scholar
[21]
H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E.J. Beckman, and A.T. Bell, Chem. Rev., 101 (2001) 953–996.
Google Scholar
[22]
G. Centi, Santen RAV. Catalysis for renewable. Weimheim: WILEY-VCH; (2007).
Google Scholar
[23]
A. L. Linsebigler, G. L and J. T. Yates Jr, Chem. Rev., 95 (1995) 735–58.
Google Scholar
[24]
P. Usubharatana, D. McMartin, A. Veawab and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 45 (2006) 2558–2568.
DOI: 10.1021/ie0505763
Google Scholar
[25]
V.P. Indrakanti, J.D. Kubickib and H. H. Schobert. Energy Environ Sci., 2 (2009) 745–758.
Google Scholar
[26]
A. H. Yahaya, M. A. Gondal and A. Hameed, Chem. Phy. s Lett. 400 (2004) 206–212.
Google Scholar
[27]
Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, Appl. Mater. Interface. 3 (2011) 3594–601.
Google Scholar
[28]
C. Zhao, A. Krall, H. Zhao, Q. Zhang and Y. Li, Int. J. Hydrogen Energy, 37 (2012) 9967–9976.
Google Scholar
[29]
X. Y. Yang, T. C. Xiao and P. P. Edwards. Int. J. Hydrogen Energy. 36 (2011) 6546–6552.
Google Scholar
[30]
G. Liu, N. Hoivik, K. Wang and H. Jakobsen, Sol. Energy Mater. Sol. Cells, 105 (2012) 53–68.
Google Scholar
[31]
L. Kimfung, A. Xiaoping, H. P. Kyeong, M. Khraisheh, J. Tang, Catal. Today, 224 (2014) 3–12.
Google Scholar
[32]
C. Zhao, L. Liu, Q. Zhang, J. Wang and Y. Li Catal. Sci. Technol., 2 (2012) 2558–2568.
Google Scholar
[33]
V. L. Kuznetsov and P. P. Edwards, ChemSusChem, 3 (2010) 44-58.
Google Scholar
[34]
O. K. Varghese, M. Paulose, T. J. LaTempa and C. A. Grimes, Nano Lett., 9 (2009) 731-737.
Google Scholar
[35]
A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nat. Mater, 10 (2011) 456-461.
DOI: 10.1038/nmat3017
Google Scholar
[36]
Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature, 414 (2001) 625–627.
Google Scholar
[37]
M. Ni, M. K. Leung, D. Y. Leung and K. Sumathy, Renew. Sustainable Energy Rev., 11 (2007) 401–425.
Google Scholar
[38]
F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam and R. Naidu, Appl. Catal., A, 359 (2009) 25–40.
Google Scholar
[39]
P. Bouras, E. Stathatos and P. Lianos, Appl. Catal., B, 73 (2007) 51–59.
Google Scholar
[40]
K. Ko, L. Obalov, L. Matejov, D. Plach, Z. Lacn, J. Jirkovsk´y and O. Solcova, Appl. Catal., B, 89 (2009) 494–502.
Google Scholar
[41]
Lianjun Liu, Huilei Zhao, Jean Andino, and Ying Li, ACS Catal., 8 (2012) 1817-1828.
Google Scholar
[42]
L. Yuliati, H. Itoh and H. Yoshida, Chem. Phys. Lett. , 452 (2008) 178–182.
Google Scholar
[43]
Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, Phys. Chem. Chem. Phys., 2 (2000) 5302–5307.
Google Scholar
[44]
K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno and T. Funabiki, J. Phys. Chem. B, 108 (2004) 346–354.
Google Scholar
[45]
C. C. Lo, C. H. Hung, C. S. Yuan, J. F. Wu, Sol. Energy Mater. Sol. Cells, 91 (2007) 1765–1774.
Google Scholar
[46]
Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang and M. H. Whangbo, Catal. Commun. , 11 (2009) 210–213.
Google Scholar
[47]
J. Yu and A. Kudo, Adv. Funct. Mater., 16 (2006) 2163–2169.
Google Scholar
[48]
Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan and Z. Zou, ACS Appl. Mater. Interfaces, 3 (2011) 3594–3601.
Google Scholar
[49]
Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. Zou, J. Am. Chem. Soc., 132 (2010) 14385–14387.
Google Scholar
[50]
P. Trogadas, T. F. Fuller and P. Strasser, Carbon, 75 (2014) 5-42.
Google Scholar
[51]
E. Yli-Rantala, A. Pasanen, P. Kauranen, V. Ruiz, M. Borghei, E. Kauppinen, A. Oyarce, G. Lindbergh, C. Lagergren, M. Darab, S. Sunde, M. Thomassen, S. Ma-Andersen and E. Skou, Fuel Cells, 11 (2011) 715-725.
DOI: 10.1002/fuce.201000180
Google Scholar
[52]
M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 8 (2008) 3498–3502.
Google Scholar
[53]
S. Acharya, S. Martha, P. C. Sahoo, K. Parida, Inorg. Chem. Front, DOI: 10. 1039/c5qi00124b.
Google Scholar
[54]
H. Hsu, I. Shown, H. Wei, Y. Chang, H. Du, Y. Lin, C. Tseng, C. Wang, L. Chen, Y. Lind and K. Chen, Nanoscale, 5 (2013) 262–268.
Google Scholar
[55]
I. Shown, H. Hsu, Y. Chang, C. Lin, P. K. Roy, A. Ganguly, C. Wang, J. Chang, C. Wu, L. Chen, and K. Chen, Nano Lett. 14 (2014) 6097 −6103.
DOI: 10.1021/nl503609v
Google Scholar
[56]
X.J. Lv, W. F. Fu, C. Y. Hu, Y. Chen and W. -B. Zhou, RSC Adv., 3 (2013) 1753-1757.
Google Scholar
[57]
H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature, 318 (1985) 162.
Google Scholar
[58]
W. J. Ong, M. M. Gui, S. P. Chai and A. R. Mohamed, RSC Adv., 3 (2013) 4505-4509.
Google Scholar
[59]
H. Yu, S. Zhang and F. Peng, Mater. Res. Bull., 56 (2014) 19.
Google Scholar
[60]
Y. Xu and W. Zhang, ChemCatChem, 5 (2013) 2343.
Google Scholar
[61]
P. Niu, Y. Yang, J. C. Yu, G. Liu and H. Cheng, Chem. Commun., 50 (2014) 10837-10840.
Google Scholar
[62]
J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Catal. Sci. Technol., 3 (2013) 1253.
Google Scholar
[63]
M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu and J. Shi, J. Mater. Chem. A, 3 (2015) 5189.
Google Scholar
[64]
T. Ohno, N. Murakami, T. Koyanagi and Y. Yang, Journal of CO2 Utilization, 6 (2014) 17–25.
Google Scholar
[65]
W. Ong, L. Tan, S. Chai and S. Yong, Dalton Trans., 44 (2015) 1249–1257.
Google Scholar
[66]
Y. Hean, L. Zhang, M. Fan, X. Wang, M. L. Walbridge, Q. Y. Nong,. L. Zhao, Solar Energy Materials & Solar Cells, 137 (2015) 175–184.
DOI: 10.1016/j.solmat.2015.01.037
Google Scholar
[67]
S. Cao, X. Liu, Y. Yuan, Z. Zhang , Y. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, Applied Catalysis B: Environmental, 147 (2014) 940–946.
DOI: 10.1016/j.apcatb.2013.10.029
Google Scholar
[68]
K. Wang, Q. Li, B. Liua, B. Cheng , W. Ho, and J. Yu, Applied Catalysis B, Environmental http: /dx. doi. org/10. 1016/j. apcatb. 2015. 03. 045.
Google Scholar
[69]
W. Ong, L. Tan, S. Chai and S. Yong, Chem. Commun., 51 (2015) 858—861.
Google Scholar
[70]
Q. D. Truong, T. H. Le, J. Y. Liu, C. C. Chung and Y. C. Ling, Appl. Catal. A-Gen., 437 (2012) 28-35.
Google Scholar
[71]
N. Zhang, S. Ouyang, T. Kako and J. Ye, Chemical Communications, 48 (2012) 1269-1271.
Google Scholar
[72]
H. Park, J. H. Choi, K. M. Choi, D. K. Lee, J. K. Kang, J. Mater. Chem., 22 (2012) 5304-5307.
Google Scholar
[73]
W. N. Wang, J. Park, P. Biswas, Catalysis Science & Technology, 1 (2011) 593-600.
Google Scholar
[74]
N. Bao, L. Shen, T. Takata and K. Domen, Chemistry of Materials, 20 (2007) 110-117.
Google Scholar
[75]
J. Nunez, V. A. de la Pena OShea, P. Jana, J. M. Coronado and D. P. Serrano, Catal. Today, 209 (2013) 21-27.
Google Scholar
[76]
S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L.J. Wan, Z. S. Li, J. H. Ye, Y. Zhou and Z. G. Zou, Angewandte Chemie International Edition, 49 (2010) 6400-6404.
DOI: 10.1002/anie.201003270
Google Scholar
[77]
J. Guo, S. Ouyang, T. Kako, J. Ye, Applied Surface Science, 280 (2013) 418–423.
Google Scholar
[78]
X. Li, H. Pan, W. Li and Z. Zhuang, Applied Catalysis A: General, 413–414 (2012) 103-108.
Google Scholar
[79]
N. Ahmed, Y. Shibata, T. Taniguchi and Y. Izumi, J. Catal., 279 (2011) 123-135.
Google Scholar
[80]
F. Sastre, A. Corma and H. Garcia, J. Am. Chem. Soc., 134 (2012) 14137-14141.
Google Scholar
[81]
H. Bai, Z. Liu and D. D. Sun, Int. J. Hydrogen Energy, 37 (2012) 13998-14008.
Google Scholar
[82]
F. Dong, Y. Sun, M. Fu, W. -K. Ho, S. C. Lee and Z. Wu, Langmuir, 28 (2011) 766-773.
Google Scholar
[83]
Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong and P. Yang, Nano Lett., 12 (2012) 1678-1682.
Google Scholar
[84]
Q. Liu, Y. Zhou, Z. Tian, X. Chen, J. Gao and Z. Zou, J. Mater. Chem., 22 (2012) 2033-(2038).
Google Scholar
[85]
Z. Li, Y. Zhou, J. Zhang, W. Tu, Q. Liu, T. Yu and Z. Zou, Crystal Growth & Design, 12 (2012) 1476-1481.
Google Scholar
[86]
H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang and Y. Dai, Chem. Commun., 48 (2012) 9729-9731.
Google Scholar
[87]
H. Zhou, J. Guo, P. Li, T. Fan, ZhangDi and J. Ye, Sci. Rep., 2013, 3.
Google Scholar
[88]
J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang, S. Zhang, P. Hanac and C. Yangac, Chem. Soc. Rev., 44 (2015) 5981—6000.
Google Scholar
[89]
W. Shin, S. H. Lee, J. W. Shin, S. P. Lee and Y. Kim, J. Am. Chem. Soc., 125 (2003) 14688–14689.
Google Scholar
[90]
A. Parkin, J. Seravalli, K. A. Vincent, S. W. Ragsdale and F. A. Armstrong, J. Am. Chem. Soc., 129 (2007) 10328–10329.
Google Scholar
[91]
A. Bachmeier, V. C. C. Wang, T. W. Woolerton, S. Bell, J. C. Fontecilla-Camps, M. Can, S. W. Ragsdale, Y. S. Chaudhary and F. A. Armstrong, J. Am. Chem. Soc., 135 (2013) 15026–15032.
DOI: 10.1021/ja4042675
Google Scholar
[92]
T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale and F. A. Armstrong, Energy Environ. Sci., 4 (2011) 2393-2399.
Google Scholar
[93]
T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale 30 and F. A. Armstrong, J. Am. Chem. Soc., 132 (2010) 2132-2133.
DOI: 10.1021/ja910091z
Google Scholar