Solar Fuels from CO2 Photoreduction over Nano-Structured Catalysts

Article Preview

Abstract:

The image of CO2 is turning quickly because there are increasing attempts to consider it as resources for hydrocarbon based fuels rather a green house gas. Owing to the limited amount of non-renewable readily available energy sources, the paradigm of energy supply is changing from conventional energy sources to inexhaustible renewable sources such as sunlight, wind, tidal energy. But the current scientific interest is concentrated in the efficient recycling of CO2 from a waste combustion product into a solar fuel by photo reduction method that can be used within the current energy infrastructure. Solar energy as direct solar irradiations is excessively available and it is imperious to utilize it for solar fuel products. In other words, solar to chemical conversion by photo-reduction process is an effective route. Moreover, fuels from solar energy are complementary to solar to electrical energy conversion, but there is still intense research is needed before its successful commercialization. Solar fuels produced from CO2 in comparison with H2 are analyzed and it is seen that these solar-hydrocarbons fuels involves easy transportation and storage than H2 fuel. Photoreduction of CO2 is considered as one of the scientific challenges and has been carried out by different photocatalysts. But the nanostructured photocatalyst owing to their unique optical and electrical property are gaining much attention. Several nanostructured semiconductor photocatalyst such as: metal oxides, heterojunctions, porous materials, layered materials, materials with hierarchical structure, and nanobiocatalysts are acknowledged as good candidate for CO2 photo reduction. This technology not only provides an alternative way to produce the sustainable fuels, but also convert the waste CO2 into valuable chemicals, which is important for keeping our environment clean and sustainable. However, there are still several limitations present in the process of CO2 photoreduction and various strategies have been developed to overcome them. Numerous efforts are required to improve the competence of the photo reduction reaction by developing the novel and efficient photocatalyst with considerable activity, high reaction selectivity. In this chapter, we have summarized several scientific attempts that lead to the design of efficient nanocatalysts for CO2 photo reduction along with their mechanistic pathways.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-19

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Energy Information Administration. Annual Energy Review; U.S. Department of Energy, (2008).

Google Scholar

[2] S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS Nano, 4 (2010) 1259–1278.

Google Scholar

[3] J. L. Cohon, The Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use; National Academies Press 2009, ISBN-10: 0-309-14640-2.

DOI: 10.1289/ehp.119-a138

Google Scholar

[4] http: /cdiac. ornl. gov/GCP/carbonbudget/2013.

Google Scholar

[5] Y. Yuan, L. Ruan, J. Barber, J. Loo and C. Xue, Energy Environ. Sci., 7 (2014) 3934-3951.

Google Scholar

[6] N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. USA, 103 (2006) 15729-15735.

Google Scholar

[7] P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber and T. E. Muller, Energy Environ. Sci. 5 (2012) 7281-7305.

DOI: 10.1039/c2ee03403d

Google Scholar

[8] http: /fossil. energy. gov/sequestration/geologic/index. html, U.S. Department of Energy.

Google Scholar

[9] D. Chen, X. Zhang and A. F. Lee, J. Mater. Chem. A, 3 (2015) 14487-14516.

Google Scholar

[10] S. Navalon, A. Dhakshinamoorthy, M. Alvaro and H. Garcia, ChemSusChem, 6 (2013) 562 – 577.

Google Scholar

[11] E.V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal and J. Perez-Ramırez, Energy Environ. Sci., 6 (2013) 3112-3119.

Google Scholar

[12] S. Das and W. M. A. W. Daud, RSC Adv., 4 (2014) 20856-20893.

Google Scholar

[13] S. Protti, A. Albini and N. Serpone, Phys. C hem. Chem. Phys., 16 (2014) 19790—19827.

Google Scholar

[14] M. Halmann, Nature, 275 (1978) 115-116.

Google Scholar

[15] T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature, 277 (1979) 637-638.

Google Scholar

[16] B. R. Eggins, J. T. S. Irvine, E. P. Murphy and J. Grimshaw, J. Chem. Soc. Chem. Commun., 90 (1988) 1123- 1124.

Google Scholar

[17] A. J. Morris, G. J. Meyer and E. Fujita, Acc. Chem. Res., 42 (2009) 1983-(1994).

Google Scholar

[18] M. Tahir and N. S. Amin, Energy Convers Manage, 76 (2013) 194–214.

Google Scholar

[19] K. Kavita, C. Rubina and R. L. Shawnee, Ind. Eng. Chem. Res., 43 (2004) 7683–7696.

Google Scholar

[20] H. D. Lasa, B. Serrano, M. Salaices, Photocatal. Reac. Eng. New York: Springer; (2005).

Google Scholar

[21] H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E.J. Beckman, and A.T. Bell, Chem. Rev., 101 (2001) 953–996.

Google Scholar

[22] G. Centi, Santen RAV. Catalysis for renewable. Weimheim: WILEY-VCH; (2007).

Google Scholar

[23] A. L. Linsebigler, G. L and J. T. Yates Jr, Chem. Rev., 95 (1995) 735–58.

Google Scholar

[24] P. Usubharatana, D. McMartin, A. Veawab and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 45 (2006) 2558–2568.

DOI: 10.1021/ie0505763

Google Scholar

[25] V.P. Indrakanti, J.D. Kubickib and H. H. Schobert. Energy Environ Sci., 2 (2009) 745–758.

Google Scholar

[26] A. H. Yahaya, M. A. Gondal and A. Hameed, Chem. Phy. s Lett. 400 (2004) 206–212.

Google Scholar

[27] Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, Appl. Mater. Interface. 3 (2011) 3594–601.

Google Scholar

[28] C. Zhao, A. Krall, H. Zhao, Q. Zhang and Y. Li, Int. J. Hydrogen Energy, 37 (2012) 9967–9976.

Google Scholar

[29] X. Y. Yang, T. C. Xiao and P. P. Edwards. Int. J. Hydrogen Energy. 36 (2011) 6546–6552.

Google Scholar

[30] G. Liu, N. Hoivik, K. Wang and H. Jakobsen, Sol. Energy Mater. Sol. Cells, 105 (2012) 53–68.

Google Scholar

[31] L. Kimfung, A. Xiaoping, H. P. Kyeong, M. Khraisheh, J. Tang, Catal. Today, 224 (2014) 3–12.

Google Scholar

[32] C. Zhao, L. Liu, Q. Zhang, J. Wang and Y. Li Catal. Sci. Technol., 2 (2012) 2558–2568.

Google Scholar

[33] V. L. Kuznetsov and P. P. Edwards, ChemSusChem, 3 (2010) 44-58.

Google Scholar

[34] O. K. Varghese, M. Paulose, T. J. LaTempa and C. A. Grimes, Nano Lett., 9 (2009) 731-737.

Google Scholar

[35] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nat. Mater, 10 (2011) 456-461.

DOI: 10.1038/nmat3017

Google Scholar

[36] Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature, 414 (2001) 625–627.

Google Scholar

[37] M. Ni, M. K. Leung, D. Y. Leung and K. Sumathy, Renew. Sustainable Energy Rev., 11 (2007) 401–425.

Google Scholar

[38] F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam and R. Naidu, Appl. Catal., A, 359 (2009) 25–40.

Google Scholar

[39] P. Bouras, E. Stathatos and P. Lianos, Appl. Catal., B, 73 (2007) 51–59.

Google Scholar

[40] K. Ko, L. Obalov, L. Matejov, D. Plach, Z. Lacn, J. Jirkovsk´y and O. Solcova, Appl. Catal., B, 89 (2009) 494–502.

Google Scholar

[41] Lianjun Liu, Huilei Zhao, Jean Andino, and Ying Li, ACS Catal., 8 (2012) 1817-1828.

Google Scholar

[42] L. Yuliati, H. Itoh and H. Yoshida, Chem. Phys. Lett. , 452 (2008) 178–182.

Google Scholar

[43] Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, Phys. Chem. Chem. Phys., 2 (2000) 5302–5307.

Google Scholar

[44] K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno and T. Funabiki, J. Phys. Chem. B, 108 (2004) 346–354.

Google Scholar

[45] C. C. Lo, C. H. Hung, C. S. Yuan, J. F. Wu, Sol. Energy Mater. Sol. Cells, 91 (2007) 1765–1774.

Google Scholar

[46] Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang and M. H. Whangbo, Catal. Commun. , 11 (2009) 210–213.

Google Scholar

[47] J. Yu and A. Kudo, Adv. Funct. Mater., 16 (2006) 2163–2169.

Google Scholar

[48] Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan and Z. Zou, ACS Appl. Mater. Interfaces, 3 (2011) 3594–3601.

Google Scholar

[49] Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. Zou, J. Am. Chem. Soc., 132 (2010) 14385–14387.

Google Scholar

[50] P. Trogadas, T. F. Fuller and P. Strasser, Carbon, 75 (2014) 5-42.

Google Scholar

[51] E. Yli-Rantala, A. Pasanen, P. Kauranen, V. Ruiz, M. Borghei, E. Kauppinen, A. Oyarce, G. Lindbergh, C. Lagergren, M. Darab, S. Sunde, M. Thomassen, S. Ma-Andersen and E. Skou, Fuel Cells, 11 (2011) 715-725.

DOI: 10.1002/fuce.201000180

Google Scholar

[52] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 8 (2008) 3498–3502.

Google Scholar

[53] S. Acharya, S. Martha, P. C. Sahoo, K. Parida, Inorg. Chem. Front, DOI: 10. 1039/c5qi00124b.

Google Scholar

[54] H. Hsu, I. Shown, H. Wei, Y. Chang, H. Du, Y. Lin, C. Tseng, C. Wang, L. Chen, Y. Lind and K. Chen, Nanoscale, 5 (2013) 262–268.

Google Scholar

[55] I. Shown, H. Hsu, Y. Chang, C. Lin, P. K. Roy, A. Ganguly, C. Wang, J. Chang, C. Wu, L. Chen, and K. Chen, Nano Lett. 14 (2014) 6097 −6103.

DOI: 10.1021/nl503609v

Google Scholar

[56] X.J. Lv, W. F. Fu, C. Y. Hu, Y. Chen and W. -B. Zhou, RSC Adv., 3 (2013) 1753-1757.

Google Scholar

[57] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature, 318 (1985) 162.

Google Scholar

[58] W. J. Ong, M. M. Gui, S. P. Chai and A. R. Mohamed, RSC Adv., 3 (2013) 4505-4509.

Google Scholar

[59] H. Yu, S. Zhang and F. Peng, Mater. Res. Bull., 56 (2014) 19.

Google Scholar

[60] Y. Xu and W. Zhang, ChemCatChem, 5 (2013) 2343.

Google Scholar

[61] P. Niu, Y. Yang, J. C. Yu, G. Liu and H. Cheng, Chem. Commun., 50 (2014) 10837-10840.

Google Scholar

[62] J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Catal. Sci. Technol., 3 (2013) 1253.

Google Scholar

[63] M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu and J. Shi, J. Mater. Chem. A, 3 (2015) 5189.

Google Scholar

[64] T. Ohno, N. Murakami, T. Koyanagi and Y. Yang, Journal of CO2 Utilization, 6 (2014) 17–25.

Google Scholar

[65] W. Ong, L. Tan, S. Chai and S. Yong, Dalton Trans., 44 (2015) 1249–1257.

Google Scholar

[66] Y. Hean, L. Zhang, M. Fan, X. Wang, M. L. Walbridge, Q. Y. Nong,. L. Zhao, Solar Energy Materials & Solar Cells, 137 (2015) 175–184.

DOI: 10.1016/j.solmat.2015.01.037

Google Scholar

[67] S. Cao, X. Liu, Y. Yuan, Z. Zhang , Y. Liao, J. Fang, S. C. J. Loo, T. C. Sum, and C. Xue, Applied Catalysis B: Environmental, 147 (2014) 940–946.

DOI: 10.1016/j.apcatb.2013.10.029

Google Scholar

[68] K. Wang, Q. Li, B. Liua, B. Cheng , W. Ho, and J. Yu, Applied Catalysis B, Environmental http: /dx. doi. org/10. 1016/j. apcatb. 2015. 03. 045.

Google Scholar

[69] W. Ong, L. Tan, S. Chai and S. Yong, Chem. Commun., 51 (2015) 858—861.

Google Scholar

[70] Q. D. Truong, T. H. Le, J. Y. Liu, C. C. Chung and Y. C. Ling, Appl. Catal. A-Gen., 437 (2012) 28-35.

Google Scholar

[71] N. Zhang, S. Ouyang, T. Kako and J. Ye, Chemical Communications, 48 (2012) 1269-1271.

Google Scholar

[72] H. Park, J. H. Choi, K. M. Choi, D. K. Lee, J. K. Kang, J. Mater. Chem., 22 (2012) 5304-5307.

Google Scholar

[73] W. N. Wang, J. Park, P. Biswas, Catalysis Science & Technology, 1 (2011) 593-600.

Google Scholar

[74] N. Bao, L. Shen, T. Takata and K. Domen, Chemistry of Materials, 20 (2007) 110-117.

Google Scholar

[75] J. Nunez, V. A. de la Pena OShea, P. Jana, J. M. Coronado and D. P. Serrano, Catal. Today, 209 (2013) 21-27.

Google Scholar

[76] S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L.J. Wan, Z. S. Li, J. H. Ye, Y. Zhou and Z. G. Zou, Angewandte Chemie International Edition, 49 (2010) 6400-6404.

DOI: 10.1002/anie.201003270

Google Scholar

[77] J. Guo, S. Ouyang, T. Kako, J. Ye, Applied Surface Science, 280 (2013) 418–423.

Google Scholar

[78] X. Li, H. Pan, W. Li and Z. Zhuang, Applied Catalysis A: General, 413–414 (2012) 103-108.

Google Scholar

[79] N. Ahmed, Y. Shibata, T. Taniguchi and Y. Izumi, J. Catal., 279 (2011) 123-135.

Google Scholar

[80] F. Sastre, A. Corma and H. Garcia, J. Am. Chem. Soc., 134 (2012) 14137-14141.

Google Scholar

[81] H. Bai, Z. Liu and D. D. Sun, Int. J. Hydrogen Energy, 37 (2012) 13998-14008.

Google Scholar

[82] F. Dong, Y. Sun, M. Fu, W. -K. Ho, S. C. Lee and Z. Wu, Langmuir, 28 (2011) 766-773.

Google Scholar

[83] Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong and P. Yang, Nano Lett., 12 (2012) 1678-1682.

Google Scholar

[84] Q. Liu, Y. Zhou, Z. Tian, X. Chen, J. Gao and Z. Zou, J. Mater. Chem., 22 (2012) 2033-(2038).

Google Scholar

[85] Z. Li, Y. Zhou, J. Zhang, W. Tu, Q. Liu, T. Yu and Z. Zou, Crystal Growth & Design, 12 (2012) 1476-1481.

Google Scholar

[86] H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang and Y. Dai, Chem. Commun., 48 (2012) 9729-9731.

Google Scholar

[87] H. Zhou, J. Guo, P. Li, T. Fan, ZhangDi and J. Ye, Sci. Rep., 2013, 3.

Google Scholar

[88] J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang, S. Zhang, P. Hanac and C. Yangac, Chem. Soc. Rev., 44 (2015) 5981—6000.

Google Scholar

[89] W. Shin, S. H. Lee, J. W. Shin, S. P. Lee and Y. Kim, J. Am. Chem. Soc., 125 (2003) 14688–14689.

Google Scholar

[90] A. Parkin, J. Seravalli, K. A. Vincent, S. W. Ragsdale and F. A. Armstrong, J. Am. Chem. Soc., 129 (2007) 10328–10329.

Google Scholar

[91] A. Bachmeier, V. C. C. Wang, T. W. Woolerton, S. Bell, J. C. Fontecilla-Camps, M. Can, S. W. Ragsdale, Y. S. Chaudhary and F. A. Armstrong, J. Am. Chem. Soc., 135 (2013) 15026–15032.

DOI: 10.1021/ja4042675

Google Scholar

[92] T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale and F. A. Armstrong, Energy Environ. Sci., 4 (2011) 2393-2399.

Google Scholar

[93] T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale 30 and F. A. Armstrong, J. Am. Chem. Soc., 132 (2010) 2132-2133.

DOI: 10.1021/ja910091z

Google Scholar