A Review on High Temperature Stable Anatase TiO2 Photocatalysts

Article Preview

Abstract:

This review focuses on the recent developments of high temperature stable anatase TiO2 photocatalyst. Eventhough TiO2 exists in different forms anatase, rutile and brookite, anatase phase stabilization is often the key to obtain the highest photocatalytic performance for TiO2, particularly for the use as an antibacterial and self-cleaning coatings in high temperature processed ceramics. Different methods available for the anatase stabilization in literature are critically reviewed and emphasis is placed on relatively recent developments. Currently available methods of anatase stabilizations are classified in to four categories viz (i) doping with metal ions (ii) doping with non-metal ions (iii) co-doping with metal and non-metal ions and (iv) dopant free stabilization by oxygen richness. Further to this, the application of these high temperature stabilized anatase TiO2 photocatalyst on various ceramics substrates such as tile, glass and sanitary wares as self-cleaning and antibacterial coatings are also been briefly discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-93

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. W. Shriver and D. F. Atkins, Inorganic Chemistry, Oxford University Press, Oxford, (1999).

Google Scholar

[2] O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33-177.

Google Scholar

[3] R. Thompson, Industrial Inorganic Chemicals - Production and Uses, Royal Society of Chemistry, London, (1995).

Google Scholar

[4] M. Gopal, W. J. M. Chan, L. C. De Jonghe, Room temperature synthesis of crystalline metal oxides, J. Mater. Sci. 32 (1997) 6001-6008.

Google Scholar

[5] A. Fujishima, X. Chang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[6] C. F. Goodeve, J. A. Kitchener, Photosensitization by titanium dioxide, Trans. Faraday Soc. 34 (1938) 570-579.

DOI: 10.1039/tf9383400570

Google Scholar

[7] X. Wang, Z. Li, J. Shi, Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods and nanobelts, Chem. Rev. 114 (2014) 9346-9384.

DOI: 10.1021/cr400633s

Google Scholar

[8] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[9] A. Hagfeldt, M. Grätzel, Light-induced reactions in nano crystalline systems, Chem. Rev. 95 (1995) 49-68.

Google Scholar

[10] B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[11] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[12] A. Fujishima, T. N. Rao, D. A. Tyrk, Titanium dioxide Photocatalysis, J. Photochem. Photobiol. C. Photochem. Rev. 1 (2000) 1-21.

Google Scholar

[13] A. Mills, S. K. Lee, A web-based overview of semiconductor photochemistry-based current commercial applications, J. Photochem. Photobiol. A: Chem. 152 (2002) 233-247.

DOI: 10.1016/s1010-6030(02)00243-5

Google Scholar

[14] S. Funk, B. Hokkanen, U. Burghaus, A. Ghicov and P. Schmuki, Unexpected adsorption of oxygen on TiO2 nanotube arrays: Influence of crystal structure, Nano Lett. 7 (2007) 10911094.

DOI: 10.1021/nl062797j

Google Scholar

[15] T. Paunesku, T. Rajh, G. Wiederrecht, J. Maser, S. Vogt, N. Stojicevic, M. Protic, B. Lai, J. Oryhon, M. Thurnauer, G. Woloschak, Biology of TiO2- oligonucleotide nanocomposites, Nature Mater. 2 (2003) 343-346.

DOI: 10.1038/nmat875

Google Scholar

[16] C. N. R. Rao, K. J. Rao, Phase transition in Solids, McGraw-Hill, New York, (1978).

Google Scholar

[17] H. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem. 8 (1998) 2073-(2076).

DOI: 10.1039/a802619j

Google Scholar

[18] U. Stafford, K. A. Gray, P. V. Kamat, A. Varma, An in situ Investigation of Photocatalytic Degradation of 4-Chlorophenol on a TiO2 Powder Surface By FTIR Spectroscopy, Chem. Phys. Lett. 205 (1993) 55-61.

DOI: 10.1016/0009-2614(93)85166-l

Google Scholar

[19] G. Riegel, J. R. Bolton, Photocatalytic efficiencyvariability in TiO2 particles, J. Phys. Chem. 99 (1995) 4215-4224.

Google Scholar

[20] S. Yin, Y. Aita, M. Komatsu, T. Sato, Visible-light-induced photocatalytic activity of TiO2xNy prepared by solvothermal process in urea-alcohol system, J. Eur. Ceram. Soc. 26 (2006) 2735-2742.

DOI: 10.1016/j.jeurceramsoc.2005.05.012

Google Scholar

[21] A. R. Gandhe, S. P. Naik, J. B. Fernades, Selective synthesis of N-doped mesoporous TiO2 phases, Micropor. Mesopor. Mater. 87 (2005) 103-109.

DOI: 10.1016/j.micromeso.2005.07.017

Google Scholar

[22] M. Machida, W. K. Norimoto, T. Kimura, Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware, J. Am. Ceram. Soc. 88 (2005) 95-100.

DOI: 10.1111/j.1551-2916.2004.00006.x

Google Scholar

[23] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jap. J. Appl. Phys. 44 (2005) 8269.

DOI: 10.1143/jjap.44.8269

Google Scholar

[24] X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Self-cleaning particle coating with antireflection properties, Chem. Mater. 17 (2005) 696-700.

DOI: 10.1021/cm0484201

Google Scholar

[25] P. V. Kamat, Photochemistry on nonreactive and recative (semiconductor) surfaces, Chem. Rev. 93 (1993) 267-300.

DOI: 10.1021/cr00017a013

Google Scholar

[26] P. I. Gouma, M. J. Mills, Anatase to rutile transformation in titania powders, J. Am. Ceram. Soc. 84 (2001) 619-622.

DOI: 10.1111/j.1151-2916.2001.tb00709.x

Google Scholar

[27] A. W. Czanderna, C. N. R. Rao, J. M. Honig, The anatase-rutile transition, Trans. Faraday Soc. 54 (1958) 1069-1073.

DOI: 10.1039/tf9585401069

Google Scholar

[28] S. R. Yoganarasimhan, C. N. R. Rao, Mechanism of crystal structure transformations. Part 3- Factors affecting the anatase-rutile transformation, Trans. Faraday Soc. 58 (1962)15791589.

DOI: 10.1039/tf9625801579

Google Scholar

[29] K. J. D. MacKenzie, The effect of reaction atmosphere and electric fields on the anataserutile transformation, Trans. J. Br. Ceram. Soc. 74 (1975) 121-125.

Google Scholar

[30] Y. Li, T. J. White, S. H. Lim, Low- temperature synthesis and microstructural control of titania nano-particles, J. Sol. State Chem. 177 (2004) 1372-1381.

DOI: 10.1016/j.jssc.2003.11.016

Google Scholar

[31] M. S. P. Francisco, V. R. Mastelaro, Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies, Chem. Mater. 14 (2002) 2514-2518.

DOI: 10.1021/cm011520b

Google Scholar

[32] K. N. P. Kumar, K. Keizer, A. J. Burggraaf, Densification of Nanostructured Titania Assited by a Phase Transformation, Nature 358 (1992) 48-51.

DOI: 10.1038/358048a0

Google Scholar

[33] F. P. Torgal, M. V. Diamanti, A. Nazari ,C. G. Granqvist, Nano technology in eco-efficient constructions, Woodhead publishing, 2013. Oxford Cambridge Philadelphia, New Delhi.

Google Scholar

[34] P. Periyat, S.C. Pillai, D. E. McCormack, J. Colreavy, S.J. Hinder, Improved high temperature stability and sun-light driven photocatalytic activity of sulfur doped anatase TiO2, J. Phys. Chem. C 112 (2008) 7644-7652.

DOI: 10.1021/jp0774847

Google Scholar

[35] K. J. D. MacKenzie, The calcinations of titania: the effect of additive on the anatase-rutile transformation, Trans. J. Br. Ceram. Soc. 74 (1975) 29-34.

Google Scholar

[36] V. Guidi, M. C. Carotta, M. Ferroni, G. Martinelli, M. Sacerdoti, Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile, J. Phys. Chem. B. 107 (2003) 120-124.

DOI: 10.1021/jp013572u

Google Scholar

[37] W. Choi, A. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[38] P. I. Gouma, M. J. Mills, Anatase-to-Rutile Transformation in Titania Powders. J. Am. Ceram. Soc. 84 (2001) 619-622.

DOI: 10.1111/j.1151-2916.2001.tb00709.x

Google Scholar

[39] H. Kominami, M. Kohno, Y. Matsunaga, Y. Kera, Thermal decomposition of titanium alkoxide and silicate ester in organic solvent: A new method for synthesizing large surfacearea, silica-modified titanium(IV) oxide of high thermal stability, J. Am. Ceram. Soc. 84 (2001).

DOI: 10.1111/j.1151-2916.2001.tb00811.x

Google Scholar

[40] K. Okada, N. Yamamoto, Y. Kameshima, Y. Yasumori, Effect of silica additive on the anatase-to-rutile phase transition, J. Am. Ceram. Soc. 84 (2001) 1591-1596.

DOI: 10.1111/j.1151-2916.2001.tb00882.x

Google Scholar

[41] S. R. Kumar, C. Suresh, A.K. Vasudevan, N.R. Suja, P. Mukundan, K.G.K. Warrier, Phase transformation in sol-gel titania containing silica, Mater. Lett. 38 (1999) 161-166.

DOI: 10.1016/s0167-577x(98)00152-9

Google Scholar

[42] J. Yang, Y. X. Huang, J. M. F. Ferreira, Inhibitory Effect of Alumina Additive on Titania Phase Transformation of a Sol-Gel-Derived, J. Mater. Sci. Lett. 16 (1997) 1933-(1935).

Google Scholar

[43] J. Yang, J. M. F. Ferreira, Inhibitory effect of the Al2O3-SiO2 mixed additives on the anatase-rutile phase transformation, Mater. Lett. 36 (1998) 320-324.

DOI: 10.1016/s0167-577x(98)00042-1

Google Scholar

[44] K. Y. Jung, S. B. Pask, Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene, Appl. Catal. B. Environ. 25 (2000) 249-256.

DOI: 10.1016/s0926-3373(99)00134-4

Google Scholar

[45] C. Anderson, A. J. Bard, An improved photocatalyst of TiO2/SiO2 prepared by sol-gel synthesis, J. Phys. Chem. 99 (1995) 9882-9885.

DOI: 10.1021/j100024a033

Google Scholar

[46] C. Anderson, A. J. Bard, Improved Photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials, J. Phys. Chem. B 101 (1997) 2611-2616.

Google Scholar

[47] A. Mabakazu, T. Kawamura, S. Kodama, Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species, J. Phys. Chem. 92 (2) (1998) 438-440.

DOI: 10.1021/j100313a039

Google Scholar

[48] X. Fu, L.A. Clark, Q. Yang, M. A. Anderson, Enhanced photocatlytic performance of titania-based binary metal oxides-TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol. 30 (1996) 647-653.

DOI: 10.1021/es950391v

Google Scholar

[49] S. Sivakumar, C. P. Sibu, P. Mukundan, P. K. Pillai, K. G. K. Warrier, Nanoporous titania- alumina mixed oxides-an alkoxide free sol-gel synthesis, Mater. Lett. 58 (2004) 2664.

DOI: 10.1016/j.matlet.2004.03.050

Google Scholar

[50] A. Attia, M. Zukalova, J. Rathousky, A. Zukal, L. Kavan, Mesoporous electrode material from alumina-stabilized anatase TiO2 for lithium ion batteries, J. solid state Electrochem. 9 (2005) 138-145.

DOI: 10.1007/s10008-004-0564-3

Google Scholar

[51] K.V. Baiju, P. Periyat, P. K. Pillai, P. Mukundan, K. G. K. Warrier, W. Wunderlich, Enhanced photoactivity and anatase thermal stability of silica-alumina mixed oxide additives on sol-gel nanocrystalline titania, Mater. Lett. 61 (2007) 1751-1755.

DOI: 10.1016/j.matlet.2006.07.124

Google Scholar

[52] X. Bokhimi, A. Morales, O. Novaro, Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol-gel technique, Chem. Mater. 9 (1997) 2616-2620.

DOI: 10.1021/cm970279r

Google Scholar

[53] T. Peng, D. Zhao, H. Sing, C. Yan, Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity, J. Mol. Catal. A: Chem. 238 (2005) 119-126.

DOI: 10.1016/j.molcata.2005.04.066

Google Scholar

[54] J. Lin and J. C. Yu, An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air, J. Photochem. Photobiol. A Chem. 116 (1998) 6367.

DOI: 10.1016/s1010-6030(98)00289-5

Google Scholar

[55] K. M. Parida, N. Sahu, Visible light induced photocatalytic activity of rare earth titania nanocomposites, J. Mol. Catal. A: Chem. 287 (2008) 151-158.

DOI: 10.1016/j.molcata.2008.02.028

Google Scholar

[56] J. Nair, P. Nair, F. Mizukami, Y. Oosawa, T. Okubo, Microstructure and phase transformation behavior of doped nanostructured titania, Mater. Res. Bull. 34 (1999) 12751290.

DOI: 10.1016/s0025-5408(99)00113-0

Google Scholar

[57] K. T. Ranjit, I. Willner, S. H. Bossmann, A. M. Braun, Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of pchlorophenoxyacetic acid, Environ. Sci. Technol. 35 (2001) 1544-1549.

DOI: 10.1021/es001613e

Google Scholar

[58] P. Periyat, K. V. Baiju, P. Mukundan, P. K. Pillai, K. G. K. Warrier, Aqueous colloidal sol- gel route to synthesize nanosized ceria-doped titania having high surface area and increased anatase phase stability, J. Sol-Gel Technol. 43 (2007).

DOI: 10.1007/s10971-007-1583-1

Google Scholar

[59] C. A. LeDuc, J. M. Campbell, J. A. Rosssin, Effect of lanthana as a stabilizing agent in titanium dioxide support, Ind. Eng. Chem. Res. 35 (1996) 2473-2476.

DOI: 10.1021/ie960112s

Google Scholar

[60] R. Gopalan, Y. S. Lin, Evolution of pore and phase structure of sol-gel derived lanthana doped titania at high temperatures, Ind. Eng. Chem. Res., 34 (1995) 1189-1195.

DOI: 10.1021/ie00043a022

Google Scholar

[61] C. P. Sibu, S. R. Kumar, P. Mukundan, K. G. K. Warrier, Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide, Chem. Mater. 14 (2002) 2876-2881.

DOI: 10.1021/cm010966p

Google Scholar

[62] D. A. Hanaor, C. C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46 (2011) 855-874.

DOI: 10.1007/s10853-010-5113-0

Google Scholar

[63] Y. Xie, C. Yuan, Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation, Appl. Surf. Sci. 221 (2004) 17-24.

DOI: 10.1016/s0169-4332(03)00945-0

Google Scholar

[64] G. Li, C. Liu, Y. Liu, Different effects of cerium ions doping on properties of anatase and rutile TiO2, Appl. Surf. Sci. 253 (2006) 2481-2486.

DOI: 10.1016/j.apsusc.2006.05.002

Google Scholar

[65] S. Hishita, I. Mutoh, K. Koumoto, H. Yanagida, Inhibition mechanism of the anatase-rutile phase transformation by rare earth oxides, Ceram. Int. 9 (1983) 61-67.

DOI: 10.1016/0272-8842(83)90025-1

Google Scholar

[66] D. Zhao, T. Peng, M. Liu, L. Lu, P. Cai, Fabrication, characterization and photocatalytic activity of Gd3+ -doped titania nanoparticles with mesostructure, J. Micro. Mesopor. Mater. 114 (2008) 166-174.

DOI: 10.1016/j.micromeso.2008.01.001

Google Scholar

[67] Y. Zhang, H. Zhang, Y. Xu, Y. Wang, Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2, J. Solid State Chem. 177 (2004) 34903498.

DOI: 10.1016/j.jssc.2004.05.026

Google Scholar

[68] K. V. Baiju, P. Periyat, P. Shajesh, W. Wunderlich, K. A. Manjumol, V. S. Smitha, K. B. Jaimy, K.G. K. Warrier, Mesoporous gadolinium doped titania photocatalyst through an aqueous sol-gel method, J. Alloy. Compd. 505 (2010) 194-200.

DOI: 10.1016/j.jallcom.2010.06.028

Google Scholar

[69] A. Burns, G. Hayes, W. Li, J. Hirvonen, J. D. Demaree, S. I. Shah, Neodymium ion dopant effects on the phase transformation in sol-gel derived titania nanostructures, Mater Sci. Eng. B 111 (2004) 150-155.

DOI: 10.1016/j.mseb.2004.04.008

Google Scholar

[70] a) K. E. Karakitsou and X. E. Verykios, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage, J. Phys. Chem. 97 (1993) 1184-1189.

DOI: 10.1021/j100108a014

Google Scholar

[71] J. M. Hermann, J. Disdier, P. Pichat, Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination, Chem. Phys. Lett. 108 (1984) 618-622.

DOI: 10.1016/0009-2614(84)85067-8

Google Scholar

[72] D. J. Reidy, J. D. Holmes, C. Nagle, M. A. Morris, A highly thermally stable anatase phase prepared by doping with zirconia and silica coupled to a mesoporous type synthesis technique, J. Mater. Chem. 15 (2005) 3494-3500.

DOI: 10.1039/b503395k

Google Scholar

[73] K. V. Baiju, P. Shajesh, W. Wunderlich, P. Mukundan, S. R. Kumar, K. G. K. Warrier, Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol-gel derived mesoporous titania, J. Mol. Catal: A: Chem. 276 (2007) 41-46.

DOI: 10.1016/j.molcata.2007.06.017

Google Scholar

[74] a) R. Asahi, T. Morikawa, Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001).

DOI: 10.1126/science.1061051

Google Scholar

[75] J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol. 39 (2005) 1175-1179.

DOI: 10.1021/es035374h

Google Scholar

[76] A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florencio, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity, Solid State Sci. 10 (2008) 602-606.

DOI: 10.1016/j.solidstatesciences.2007.10.012

Google Scholar

[77] N. N. Khimich, B. I. Venzel, I. A. Drozdova, L. A. Koptelova, Trifluoroacetic acid as a new effective catalyst for preparing monolithic silica gel by the sol-gel process, Russ. J. Appl. Chem. 75 (2002) 1108-1112.

DOI: 10.1023/a:1020764229629

Google Scholar

[78] S. C. Pillai, P. Periyat, R. George, D. E. McCormack, M. K. Seery, H. Hayden, J. Colreavy, D. Corr, S. J. Hinder, Synthesis of high-temperature stable anatase TiO2 photocatalyst, J. Phys. Chem. C 111 (2007) 1605-1611.

DOI: 10.1021/jp065933h

Google Scholar

[79] J. C Yu, W. Ho, J. Yu, S. K. Hark, K. Iu, Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films, Langmuir 19 (2003) 3889-3896.

DOI: 10.1021/la025775v

Google Scholar

[80] C. Suresh, V. Biju, P. Mukundan, K. G. K. Warrier, Anatase to rutile transformation in solgel titania by modification of precursor, Polyhedron 17 (1998) 3131-3135.

DOI: 10.1016/s0277-5387(98)00077-1

Google Scholar

[81] S. C. Padmanabhan, S. C. Pillai, J. Colreavy, S. Balakrishnan, D. E. McCormack, T. S. Perova, Y. Gun'ko. S. J. Hinder, J. M. Kelly. A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania, Chem. Mater. 19 (2007).

DOI: 10.1021/cm070980n

Google Scholar

[82] W. Ho, J. C. Yu, S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, J. Solid State Chem. 179 (2006) 1171-1176.

DOI: 10.1016/j.jssc.2006.01.009

Google Scholar

[83] J. C Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol. 39 (2005) 1175-1179.

DOI: 10.1021/es035374h

Google Scholar

[84] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81(2002) 454 - 456.

DOI: 10.1063/1.1493647

Google Scholar

[85] T. Umebayashi, T. Yamaki, S. Tanala, K. Asai, Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2, Chem. Lett. 32 (2003) 330-331.

DOI: 10.1246/cl.2003.330

Google Scholar

[86] T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanala, T. Sumita, K. Asai, Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-principles band calculation studies, J. Appl. Phys. 93 (2003).

DOI: 10.1063/1.1565693

Google Scholar

[87] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light, Chem. Lett. 32 (2003) 364-365.

DOI: 10.1246/cl.2003.364

Google Scholar

[88] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of Sdoped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A 265 (2004) 115-121.

DOI: 10.1016/j.apcata.2004.01.007

Google Scholar

[89] N. T. Nolan, M. K. Seery, S. C. Pillai, Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol− Gel-Synthesized TiO2 Photocatalysts, J. Phys. Chem. C 113 (2009) 16151-16157.

DOI: 10.1021/jp904358g

Google Scholar

[90] G. Colon, M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello, J. A. Navio, Cu-doped TiO2 systems with improved photocatalytic activity, Appl. Catal. B: Environ. 67 (2006) 4151.

Google Scholar

[91] G. Colon, M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello, J. A. Navio, Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst, Appl. Catal. B: Environ. 63 (2006) 45-59.

DOI: 10.1016/j.apcatb.2005.09.008

Google Scholar

[92] G. Colon, J. M. S. Espana, M. C. Hidalgo, J. A. Navıo, Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation, J. Photochem. Photobio. A: Chem. 179 (2006) 20-27.

Google Scholar

[93] X. Bokhimi, A. Morales, O. Novaro, Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol-gel technique Chem. Mater. 9 (1997) 2616-2620.

DOI: 10.1021/cm970279r

Google Scholar

[94] A. K. L. Sajjad, S Shamaila, J. Zhang, Study of new states in visible light active W, N codoped TiO2 photo catalyst, Mater. Res. Bull. 47 (2012) 3083-3089.

DOI: 10.1016/j.materresbull.2012.08.032

Google Scholar

[95] G. Liu, Y. Zhao, C. Sun, F. Li, G.Q. Lu, H. Cheng, Synergistic Effects of B/N Doping on the Visible Light Photocatalytic Activity of Mesoporous TiO2, Angew. Chem. Int. Ed. 47 (2008) 4516.

DOI: 10.1002/anie.200705633

Google Scholar

[96] X. Z. Shen, Z. C. Liu, S. M. Xie, J. Guo, Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination, J. Hazard. Mater. 162 (2009) 1193-1198.

DOI: 10.1016/j.jhazmat.2008.06.004

Google Scholar

[97] X. Cheng, X. Yu, Z. Xing, Characterization and mechanism analysis of Mo-N-co-doped TiO2 nano-photocatalyst and its enhanced visible activity, J. Colloid. Interface Sci. 372 (2012) 1-5.

DOI: 10.1016/j.jcis.2011.11.071

Google Scholar

[98] P. Periyat, P. A. Saeed, S. G. Ullattil, Anatase titania nanorods by pseudo-inorganic templating, Mater. Sci. Semicond. Process. 31(2015) 658-665.

DOI: 10.1016/j.mssp.2014.12.040

Google Scholar

[99] S. R. Kumar, S. C. Pillai, U. S. Hareesh, P. Mukundan, K. G. K. Warrier, Synthesis of thermally stable, high surface area anatase-alumina mixed oxides, Mater. Lett. 43 (2000) 286-290.

DOI: 10.1016/s0167-577x(99)00275-x

Google Scholar

[100] J. Kim, K. C. Song, S. Foncillas, S. Pratsinis, Dopants for synthesis of stable bimodally porous titania, J. Eur. Ceram. Soc. 21 (2001) 2863-2872.

DOI: 10.1016/s0955-2219(01)00222-9

Google Scholar

[101] S. Perera, E. G. Gillan, High-temperature stabilized anatase TiO2 from an aluminum-doped TiCl3 precursor, Chem. Comm. 48 (2005) 5988-5990.

DOI: 10.1039/b512148e

Google Scholar

[102] M. A. Debeila, M. C. Raphulu, E. Mokoena, M. Avalos, V. Petranovskii, N. J. Coville, M. S. Scurrell, The effect of gold on the phase transitions of titania Mater. Sci. Eng. 396 (2005) 61-69.

DOI: 10.1016/j.msea.2004.12.047

Google Scholar

[103] M. K. Akhtar, S. E. Pratsinis, S. V. R. Mastrangelo, Dopants in Vapor-Phase Synthesis of Titania Powders, J. Am. Ceram. Soc. 75 (1992) 3408-3416.

DOI: 10.1111/j.1151-2916.1992.tb04442.x

Google Scholar

[104] S. Vargas, R. Arroyo, E. Haro, R. Rodriguez, Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method, J. Mater. Res. 14 (1999) 3932-3937.

DOI: 10.1557/jmr.1999.0532

Google Scholar

[105] Y. Zhang, H. Xu, Y. Xu, H. Zhang, Y. Wang, The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution, J. Photochem. Photobiol. A 170 (2005) 279-285.

DOI: 10.1016/j.jphotochem.2004.09.001

Google Scholar

[106] E. Setiawati, K. Kawano, Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2, J. Alloy. Compd. 451(2008) 293-296.

DOI: 10.1016/j.jallcom.2007.04.059

Google Scholar

[107] K. T. Ranjit, H. Cohen, I. Willner, S. Bossmann, A. M. Braun, Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants, J. Mater. Sci. 34 (1999) 5273-5280.

DOI: 10.1006/jcat.2001.3388

Google Scholar

[108] J. Domaradzki, D. Kaczmarek, A. Borkowska, D. Schmeisser, S. Mueller, R. Wasielewski, A. Ciszewski, D. Wojcieszak, Influence of annealing on the structure and stoichiometry of europium-doped titanium dioxide thin films, Vacuum 82 (2008).

DOI: 10.1016/j.vacuum.2008.01.021

Google Scholar

[109] R. Janes, L. J. Knightley, C. J. Harding, Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing, Dyes Pigm. 62 (2004) 199.

DOI: 10.1016/j.dyepig.2003.12.003

Google Scholar

[110] K. V. Baiju, C. P. Sibu, K. Rajesh, P. K. Pillai, P. Mukundan, K. G. K. Warrier, W. Wunderlich, An aqueous sol-gel route to synthesize nanosized lanthana-doped titania having an increased anatase phase stability for photocatalytic application, Mater. Chem. Phys. 90 (2005).

DOI: 10.1016/j.matchemphys.2004.10.024

Google Scholar

[111] K. C. Heo, C. I. Ok, J. W. Kim, B. K. Moon, The effects of manganese ions and their magnetic properties on the anatase-rutile phase transition of nanocrystalline TiO2: Mn prepared by using the solvothermal method, J. Kor. Phys. Soc. 47 (2005).

Google Scholar

[112] R. Arroyo, G. Cordoba, J. Padilla, V. H. Lara, Influence of manganese ions on the anatase- rutile phase transition of TiO2 prepared by the sol-gel process, Mater. Lett. 54 (2002) 397402.

DOI: 10.1016/s0167-577x(01)00600-0

Google Scholar

[113] J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, J. R. Morante, Effects of Nb doping on the TiO2 anatase-to-rutile phase transition, J. Appl. Phys. 92 (2002) 853-861.

DOI: 10.1063/1.1487915

Google Scholar

[114] J. Craido, C. Real, Mechanism of the inhibiting effect of phosphate on the anatase→ rutile transformation induced by thermal and mechanical treatment of TiO2, J. Chem. Soc: Faraday Trans. 79 (1983) 2765-2771.

DOI: 10.1039/f19837902765

Google Scholar

[115] J. Moon, H. Takagi, Y. Fujishiro, M. Awano, Preparation and characterization of the Sbdoped TiO2 photocatalysts, J. Mater. Sci. 36 (2001) 949- 955.

Google Scholar

[116] E. Setiawati, K. Kawano, Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2, J. Alloys Compd. 451 (2008) 293-296.

DOI: 10.1016/j.jallcom.2007.04.059

Google Scholar

[117] A. Rampaul, I. P. Parkin, S. A. O'Neill, J. DeSouza, A. Mills, N. Elliott, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron 22 (2003) 3544.

DOI: 10.1016/s0277-5387(02)01333-5

Google Scholar

[118] A. Jaroenworaluck, W. Sunsaneeyametha, R. Stevens, Surface Characteristics of ZirconiaCoated TiO2 and its Phase Transformation, Key Eng. Mater. 334 (2007) 1101-1104.

DOI: 10.4028/www.scientific.net/kem.334-335.1101

Google Scholar

[119] M. Hirano, N. Nakahara, K. Ota, O. Tanaike, N. Inagaki, Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions, J. Solid State Chem. 170 (2003).

DOI: 10.1016/s0022-4596(02)00013-0

Google Scholar

[120] J. Yang, J. M. F. Fereira, On the titania phase transition by zirconia additive in a sol-gelderived powder, Mater. Res. Bull. 33 (1998) 389-394.

Google Scholar

[121] V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible-Light Active Anatase Photocatalyst, Adv. Fun. Mater. 21 (2011) 3744-3752.

DOI: 10.1002/adfm.201100301

Google Scholar

[122] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimogigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature 388 (1997) 431432.

DOI: 10.1038/41233

Google Scholar

[123] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces Adv. Mater. 10 (1998) 135-138.

DOI: 10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.0.co;2-m

Google Scholar

[124] T. Watanabe, K. Hashimoto, A. Fujishima, 1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air (1992).

Google Scholar

[125] A. Heller, Chemistry and applications of photocatalytic oxidation of thin organic films, Acc. Chem. Res. 28 (1995) 503-508.

DOI: 10.1021/ar00060a006

Google Scholar

[126] S. Sitkiewitz, A. Heller, Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass, New. J. Chem. 20 (1996) 233-241.

Google Scholar

[127] H. Honda, A. Ishizaki, R. Soma, K. Hashimoto, A. Fujishima, Application of photocatalytic reactions caused by TiO2 film to improve the maintenance factor of lighting systems, J. Illum. Eng. Soc. Winter (1998) 42-49.

DOI: 10.1080/00994480.1998.10748209

Google Scholar

[128] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Japan. J. Appl. Phys. 44 (2005) 8269.

DOI: 10.1143/jjap.44.8269

Google Scholar

[129] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC, Inc., Tokyo (1999).

Google Scholar

[130] A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches, C. R. Chim. 9 (2006) 750-760.

DOI: 10.1016/j.crci.2005.02.055

Google Scholar

[131] L. Cassar, Photocatalysis of cementitious materials: clean buildings and clean air MRS Bull. 29 (2004) 328-331.

DOI: 10.1557/mrs2004.99

Google Scholar

[132] X.T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Self-cleaning particle coating with antireflection properties, Chem. Mater. 17 (2005) 696-700.

DOI: 10.1021/cm0484201

Google Scholar

[133] X. Zhang, A. Fujishima, M. Jin, A.V. Emeline, T. Murakami, Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties, J. Phys. Chem. B. 110 (2006) 25142-25148.

DOI: 10.1021/jp064442u

Google Scholar

[134] A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, J. Kiwi, Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation, J. Photochem. Photobiol. A: Chem. 174 (2005) 156-164.

DOI: 10.1016/j.jphotochem.2005.03.019

Google Scholar

[135] A. Bozzi, T. Yuranova, J. Kiwi, Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature, J. Photochem. Photobiol. A: Chem. 172 (2005) 27-34.

DOI: 10.1016/j.jphotochem.2004.11.010

Google Scholar