p.20
p.33
p.45
p.58
p.78
p.94
p.105
p.127
p.139
A Review on High Temperature Stable Anatase TiO2 Photocatalysts
Abstract:
This review focuses on the recent developments of high temperature stable anatase TiO2 photocatalyst. Eventhough TiO2 exists in different forms anatase, rutile and brookite, anatase phase stabilization is often the key to obtain the highest photocatalytic performance for TiO2, particularly for the use as an antibacterial and self-cleaning coatings in high temperature processed ceramics. Different methods available for the anatase stabilization in literature are critically reviewed and emphasis is placed on relatively recent developments. Currently available methods of anatase stabilizations are classified in to four categories viz (i) doping with metal ions (ii) doping with non-metal ions (iii) co-doping with metal and non-metal ions and (iv) dopant free stabilization by oxygen richness. Further to this, the application of these high temperature stabilized anatase TiO2 photocatalyst on various ceramics substrates such as tile, glass and sanitary wares as self-cleaning and antibacterial coatings are also been briefly discussed.
Info:
Periodical:
Pages:
78-93
Citation:
Online since:
May 2016
Authors:
Keywords:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] P. W. Shriver and D. F. Atkins, Inorganic Chemistry, Oxford University Press, Oxford, (1999).
[2] O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33-177.
[3] R. Thompson, Industrial Inorganic Chemicals - Production and Uses, Royal Society of Chemistry, London, (1995).
[4] M. Gopal, W. J. M. Chan, L. C. De Jonghe, Room temperature synthesis of crystalline metal oxides, J. Mater. Sci. 32 (1997) 6001-6008.
[5] A. Fujishima, X. Chang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515-582.
[6] C. F. Goodeve, J. A. Kitchener, Photosensitization by titanium dioxide, Trans. Faraday Soc. 34 (1938) 570-579.
DOI: 10.1039/tf9383400570
[7] X. Wang, Z. Li, J. Shi, Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods and nanobelts, Chem. Rev. 114 (2014) 9346-9384.
DOI: 10.1021/cr400633s
[8] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications, Chem. Rev. 107 (2007) 2891-2959.
DOI: 10.1021/cr0500535
[9] A. Hagfeldt, M. Grätzel, Light-induced reactions in nano crystalline systems, Chem. Rev. 95 (1995) 49-68.
[10] B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
DOI: 10.1038/353737a0
[11] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
[12] A. Fujishima, T. N. Rao, D. A. Tyrk, Titanium dioxide Photocatalysis, J. Photochem. Photobiol. C. Photochem. Rev. 1 (2000) 1-21.
[13] A. Mills, S. K. Lee, A web-based overview of semiconductor photochemistry-based current commercial applications, J. Photochem. Photobiol. A: Chem. 152 (2002) 233-247.
[14] S. Funk, B. Hokkanen, U. Burghaus, A. Ghicov and P. Schmuki, Unexpected adsorption of oxygen on TiO2 nanotube arrays: Influence of crystal structure, Nano Lett. 7 (2007) 10911094.
DOI: 10.1021/nl062797j
[15] T. Paunesku, T. Rajh, G. Wiederrecht, J. Maser, S. Vogt, N. Stojicevic, M. Protic, B. Lai, J. Oryhon, M. Thurnauer, G. Woloschak, Biology of TiO2- oligonucleotide nanocomposites, Nature Mater. 2 (2003) 343-346.
DOI: 10.1038/nmat875
[16] C. N. R. Rao, K. J. Rao, Phase transition in Solids, McGraw-Hill, New York, (1978).
[17] H. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem. 8 (1998) 2073-(2076).
DOI: 10.1039/a802619j
[18] U. Stafford, K. A. Gray, P. V. Kamat, A. Varma, An in situ Investigation of Photocatalytic Degradation of 4-Chlorophenol on a TiO2 Powder Surface By FTIR Spectroscopy, Chem. Phys. Lett. 205 (1993) 55-61.
[19] G. Riegel, J. R. Bolton, Photocatalytic efficiencyvariability in TiO2 particles, J. Phys. Chem. 99 (1995) 4215-4224.
[20] S. Yin, Y. Aita, M. Komatsu, T. Sato, Visible-light-induced photocatalytic activity of TiO2xNy prepared by solvothermal process in urea-alcohol system, J. Eur. Ceram. Soc. 26 (2006) 2735-2742.
[21] A. R. Gandhe, S. P. Naik, J. B. Fernades, Selective synthesis of N-doped mesoporous TiO2 phases, Micropor. Mesopor. Mater. 87 (2005) 103-109.
[22] M. Machida, W. K. Norimoto, T. Kimura, Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware, J. Am. Ceram. Soc. 88 (2005) 95-100.
[23] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jap. J. Appl. Phys. 44 (2005) 8269.
DOI: 10.1143/jjap.44.8269
[24] X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Self-cleaning particle coating with antireflection properties, Chem. Mater. 17 (2005) 696-700.
DOI: 10.1021/cm0484201
[25] P. V. Kamat, Photochemistry on nonreactive and recative (semiconductor) surfaces, Chem. Rev. 93 (1993) 267-300.
DOI: 10.1021/cr00017a013
[26] P. I. Gouma, M. J. Mills, Anatase to rutile transformation in titania powders, J. Am. Ceram. Soc. 84 (2001) 619-622.
[27] A. W. Czanderna, C. N. R. Rao, J. M. Honig, The anatase-rutile transition, Trans. Faraday Soc. 54 (1958) 1069-1073.
DOI: 10.1039/tf9585401069
[28] S. R. Yoganarasimhan, C. N. R. Rao, Mechanism of crystal structure transformations. Part 3- Factors affecting the anatase-rutile transformation, Trans. Faraday Soc. 58 (1962)15791589.
DOI: 10.1039/tf9625801579
[29] K. J. D. MacKenzie, The effect of reaction atmosphere and electric fields on the anataserutile transformation, Trans. J. Br. Ceram. Soc. 74 (1975) 121-125.
[30] Y. Li, T. J. White, S. H. Lim, Low- temperature synthesis and microstructural control of titania nano-particles, J. Sol. State Chem. 177 (2004) 1372-1381.
[31] M. S. P. Francisco, V. R. Mastelaro, Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies, Chem. Mater. 14 (2002) 2514-2518.
DOI: 10.1021/cm011520b
[32] K. N. P. Kumar, K. Keizer, A. J. Burggraaf, Densification of Nanostructured Titania Assited by a Phase Transformation, Nature 358 (1992) 48-51.
DOI: 10.1038/358048a0
[33] F. P. Torgal, M. V. Diamanti, A. Nazari ,C. G. Granqvist, Nano technology in eco-efficient constructions, Woodhead publishing, 2013. Oxford Cambridge Philadelphia, New Delhi.
[34] P. Periyat, S.C. Pillai, D. E. McCormack, J. Colreavy, S.J. Hinder, Improved high temperature stability and sun-light driven photocatalytic activity of sulfur doped anatase TiO2, J. Phys. Chem. C 112 (2008) 7644-7652.
DOI: 10.1021/jp0774847
[35] K. J. D. MacKenzie, The calcinations of titania: the effect of additive on the anatase-rutile transformation, Trans. J. Br. Ceram. Soc. 74 (1975) 29-34.
[36] V. Guidi, M. C. Carotta, M. Ferroni, G. Martinelli, M. Sacerdoti, Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile, J. Phys. Chem. B. 107 (2003) 120-124.
DOI: 10.1021/jp013572u
[37] W. Choi, A. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
DOI: 10.1021/j100102a038
[38] P. I. Gouma, M. J. Mills, Anatase-to-Rutile Transformation in Titania Powders. J. Am. Ceram. Soc. 84 (2001) 619-622.
[39] H. Kominami, M. Kohno, Y. Matsunaga, Y. Kera, Thermal decomposition of titanium alkoxide and silicate ester in organic solvent: A new method for synthesizing large surfacearea, silica-modified titanium(IV) oxide of high thermal stability, J. Am. Ceram. Soc. 84 (2001).
[40] K. Okada, N. Yamamoto, Y. Kameshima, Y. Yasumori, Effect of silica additive on the anatase-to-rutile phase transition, J. Am. Ceram. Soc. 84 (2001) 1591-1596.
[41] S. R. Kumar, C. Suresh, A.K. Vasudevan, N.R. Suja, P. Mukundan, K.G.K. Warrier, Phase transformation in sol-gel titania containing silica, Mater. Lett. 38 (1999) 161-166.
[42] J. Yang, Y. X. Huang, J. M. F. Ferreira, Inhibitory Effect of Alumina Additive on Titania Phase Transformation of a Sol-Gel-Derived, J. Mater. Sci. Lett. 16 (1997) 1933-(1935).
[43] J. Yang, J. M. F. Ferreira, Inhibitory effect of the Al2O3-SiO2 mixed additives on the anatase-rutile phase transformation, Mater. Lett. 36 (1998) 320-324.
[44] K. Y. Jung, S. B. Pask, Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene, Appl. Catal. B. Environ. 25 (2000) 249-256.
[45] C. Anderson, A. J. Bard, An improved photocatalyst of TiO2/SiO2 prepared by sol-gel synthesis, J. Phys. Chem. 99 (1995) 9882-9885.
DOI: 10.1021/j100024a033
[46] C. Anderson, A. J. Bard, Improved Photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials, J. Phys. Chem. B 101 (1997) 2611-2616.
[47] A. Mabakazu, T. Kawamura, S. Kodama, Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species, J. Phys. Chem. 92 (2) (1998) 438-440.
DOI: 10.1021/j100313a039
[48] X. Fu, L.A. Clark, Q. Yang, M. A. Anderson, Enhanced photocatlytic performance of titania-based binary metal oxides-TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol. 30 (1996) 647-653.
DOI: 10.1021/es950391v
[49] S. Sivakumar, C. P. Sibu, P. Mukundan, P. K. Pillai, K. G. K. Warrier, Nanoporous titania- alumina mixed oxides-an alkoxide free sol-gel synthesis, Mater. Lett. 58 (2004) 2664.
[50] A. Attia, M. Zukalova, J. Rathousky, A. Zukal, L. Kavan, Mesoporous electrode material from alumina-stabilized anatase TiO2 for lithium ion batteries, J. solid state Electrochem. 9 (2005) 138-145.
[51] K.V. Baiju, P. Periyat, P. K. Pillai, P. Mukundan, K. G. K. Warrier, W. Wunderlich, Enhanced photoactivity and anatase thermal stability of silica-alumina mixed oxide additives on sol-gel nanocrystalline titania, Mater. Lett. 61 (2007) 1751-1755.
[52] X. Bokhimi, A. Morales, O. Novaro, Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol-gel technique, Chem. Mater. 9 (1997) 2616-2620.
DOI: 10.1021/cm970279r
[53] T. Peng, D. Zhao, H. Sing, C. Yan, Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity, J. Mol. Catal. A: Chem. 238 (2005) 119-126.
[54] J. Lin and J. C. Yu, An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air, J. Photochem. Photobiol. A Chem. 116 (1998) 6367.
[55] K. M. Parida, N. Sahu, Visible light induced photocatalytic activity of rare earth titania nanocomposites, J. Mol. Catal. A: Chem. 287 (2008) 151-158.
[56] J. Nair, P. Nair, F. Mizukami, Y. Oosawa, T. Okubo, Microstructure and phase transformation behavior of doped nanostructured titania, Mater. Res. Bull. 34 (1999) 12751290.
[57] K. T. Ranjit, I. Willner, S. H. Bossmann, A. M. Braun, Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of pchlorophenoxyacetic acid, Environ. Sci. Technol. 35 (2001) 1544-1549.
DOI: 10.1021/es001613e
[58] P. Periyat, K. V. Baiju, P. Mukundan, P. K. Pillai, K. G. K. Warrier, Aqueous colloidal sol- gel route to synthesize nanosized ceria-doped titania having high surface area and increased anatase phase stability, J. Sol-Gel Technol. 43 (2007).
[59] C. A. LeDuc, J. M. Campbell, J. A. Rosssin, Effect of lanthana as a stabilizing agent in titanium dioxide support, Ind. Eng. Chem. Res. 35 (1996) 2473-2476.
DOI: 10.1021/ie960112s
[60] R. Gopalan, Y. S. Lin, Evolution of pore and phase structure of sol-gel derived lanthana doped titania at high temperatures, Ind. Eng. Chem. Res., 34 (1995) 1189-1195.
DOI: 10.1021/ie00043a022
[61] C. P. Sibu, S. R. Kumar, P. Mukundan, K. G. K. Warrier, Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide, Chem. Mater. 14 (2002) 2876-2881.
DOI: 10.1021/cm010966p
[62] D. A. Hanaor, C. C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46 (2011) 855-874.
[63] Y. Xie, C. Yuan, Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation, Appl. Surf. Sci. 221 (2004) 17-24.
[64] G. Li, C. Liu, Y. Liu, Different effects of cerium ions doping on properties of anatase and rutile TiO2, Appl. Surf. Sci. 253 (2006) 2481-2486.
[65] S. Hishita, I. Mutoh, K. Koumoto, H. Yanagida, Inhibition mechanism of the anatase-rutile phase transformation by rare earth oxides, Ceram. Int. 9 (1983) 61-67.
[66] D. Zhao, T. Peng, M. Liu, L. Lu, P. Cai, Fabrication, characterization and photocatalytic activity of Gd3+ -doped titania nanoparticles with mesostructure, J. Micro. Mesopor. Mater. 114 (2008) 166-174.
[67] Y. Zhang, H. Zhang, Y. Xu, Y. Wang, Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2, J. Solid State Chem. 177 (2004) 34903498.
[68] K. V. Baiju, P. Periyat, P. Shajesh, W. Wunderlich, K. A. Manjumol, V. S. Smitha, K. B. Jaimy, K.G. K. Warrier, Mesoporous gadolinium doped titania photocatalyst through an aqueous sol-gel method, J. Alloy. Compd. 505 (2010) 194-200.
[69] A. Burns, G. Hayes, W. Li, J. Hirvonen, J. D. Demaree, S. I. Shah, Neodymium ion dopant effects on the phase transformation in sol-gel derived titania nanostructures, Mater Sci. Eng. B 111 (2004) 150-155.
[70] a) K. E. Karakitsou and X. E. Verykios, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage, J. Phys. Chem. 97 (1993) 1184-1189.
DOI: 10.1021/j100108a014
[71] J. M. Hermann, J. Disdier, P. Pichat, Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination, Chem. Phys. Lett. 108 (1984) 618-622.
[72] D. J. Reidy, J. D. Holmes, C. Nagle, M. A. Morris, A highly thermally stable anatase phase prepared by doping with zirconia and silica coupled to a mesoporous type synthesis technique, J. Mater. Chem. 15 (2005) 3494-3500.
DOI: 10.1039/b503395k
[73] K. V. Baiju, P. Shajesh, W. Wunderlich, P. Mukundan, S. R. Kumar, K. G. K. Warrier, Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol-gel derived mesoporous titania, J. Mol. Catal: A: Chem. 276 (2007) 41-46.
[74] a) R. Asahi, T. Morikawa, Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001).
[75] J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol. 39 (2005) 1175-1179.
DOI: 10.1021/es035374h
[76] A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florencio, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity, Solid State Sci. 10 (2008) 602-606.
[77] N. N. Khimich, B. I. Venzel, I. A. Drozdova, L. A. Koptelova, Trifluoroacetic acid as a new effective catalyst for preparing monolithic silica gel by the sol-gel process, Russ. J. Appl. Chem. 75 (2002) 1108-1112.
[78] S. C. Pillai, P. Periyat, R. George, D. E. McCormack, M. K. Seery, H. Hayden, J. Colreavy, D. Corr, S. J. Hinder, Synthesis of high-temperature stable anatase TiO2 photocatalyst, J. Phys. Chem. C 111 (2007) 1605-1611.
DOI: 10.1021/jp065933h
[79] J. C Yu, W. Ho, J. Yu, S. K. Hark, K. Iu, Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films, Langmuir 19 (2003) 3889-3896.
DOI: 10.1021/la025775v
[80] C. Suresh, V. Biju, P. Mukundan, K. G. K. Warrier, Anatase to rutile transformation in solgel titania by modification of precursor, Polyhedron 17 (1998) 3131-3135.
[81] S. C. Padmanabhan, S. C. Pillai, J. Colreavy, S. Balakrishnan, D. E. McCormack, T. S. Perova, Y. Gun'ko. S. J. Hinder, J. M. Kelly. A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania, Chem. Mater. 19 (2007).
DOI: 10.1021/cm070980n
[82] W. Ho, J. C. Yu, S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, J. Solid State Chem. 179 (2006) 1171-1176.
[83] J. C Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol. 39 (2005) 1175-1179.
DOI: 10.1021/es035374h
[84] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81(2002) 454 - 456.
DOI: 10.1063/1.1493647
[85] T. Umebayashi, T. Yamaki, S. Tanala, K. Asai, Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2, Chem. Lett. 32 (2003) 330-331.
DOI: 10.1246/cl.2003.330
[86] T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanala, T. Sumita, K. Asai, Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-principles band calculation studies, J. Appl. Phys. 93 (2003).
DOI: 10.1063/1.1565693
[87] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light, Chem. Lett. 32 (2003) 364-365.
DOI: 10.1246/cl.2003.364
[88] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of Sdoped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A 265 (2004) 115-121.
[89] N. T. Nolan, M. K. Seery, S. C. Pillai, Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol− Gel-Synthesized TiO2 Photocatalysts, J. Phys. Chem. C 113 (2009) 16151-16157.
DOI: 10.1021/jp904358g
[90] G. Colon, M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello, J. A. Navio, Cu-doped TiO2 systems with improved photocatalytic activity, Appl. Catal. B: Environ. 67 (2006) 4151.
[91] G. Colon, M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello, J. A. Navio, Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst, Appl. Catal. B: Environ. 63 (2006) 45-59.
[92] G. Colon, J. M. S. Espana, M. C. Hidalgo, J. A. Navıo, Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation, J. Photochem. Photobio. A: Chem. 179 (2006) 20-27.
[93] X. Bokhimi, A. Morales, O. Novaro, Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol-gel technique Chem. Mater. 9 (1997) 2616-2620.
DOI: 10.1021/cm970279r
[94] A. K. L. Sajjad, S Shamaila, J. Zhang, Study of new states in visible light active W, N codoped TiO2 photo catalyst, Mater. Res. Bull. 47 (2012) 3083-3089.
[95] G. Liu, Y. Zhao, C. Sun, F. Li, G.Q. Lu, H. Cheng, Synergistic Effects of B/N Doping on the Visible Light Photocatalytic Activity of Mesoporous TiO2, Angew. Chem. Int. Ed. 47 (2008) 4516.
[96] X. Z. Shen, Z. C. Liu, S. M. Xie, J. Guo, Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination, J. Hazard. Mater. 162 (2009) 1193-1198.
[97] X. Cheng, X. Yu, Z. Xing, Characterization and mechanism analysis of Mo-N-co-doped TiO2 nano-photocatalyst and its enhanced visible activity, J. Colloid. Interface Sci. 372 (2012) 1-5.
[98] P. Periyat, P. A. Saeed, S. G. Ullattil, Anatase titania nanorods by pseudo-inorganic templating, Mater. Sci. Semicond. Process. 31(2015) 658-665.
[99] S. R. Kumar, S. C. Pillai, U. S. Hareesh, P. Mukundan, K. G. K. Warrier, Synthesis of thermally stable, high surface area anatase-alumina mixed oxides, Mater. Lett. 43 (2000) 286-290.
[100] J. Kim, K. C. Song, S. Foncillas, S. Pratsinis, Dopants for synthesis of stable bimodally porous titania, J. Eur. Ceram. Soc. 21 (2001) 2863-2872.
[101] S. Perera, E. G. Gillan, High-temperature stabilized anatase TiO2 from an aluminum-doped TiCl3 precursor, Chem. Comm. 48 (2005) 5988-5990.
DOI: 10.1039/b512148e
[102] M. A. Debeila, M. C. Raphulu, E. Mokoena, M. Avalos, V. Petranovskii, N. J. Coville, M. S. Scurrell, The effect of gold on the phase transitions of titania Mater. Sci. Eng. 396 (2005) 61-69.
[103] M. K. Akhtar, S. E. Pratsinis, S. V. R. Mastrangelo, Dopants in Vapor-Phase Synthesis of Titania Powders, J. Am. Ceram. Soc. 75 (1992) 3408-3416.
[104] S. Vargas, R. Arroyo, E. Haro, R. Rodriguez, Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method, J. Mater. Res. 14 (1999) 3932-3937.
[105] Y. Zhang, H. Xu, Y. Xu, H. Zhang, Y. Wang, The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution, J. Photochem. Photobiol. A 170 (2005) 279-285.
[106] E. Setiawati, K. Kawano, Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2, J. Alloy. Compd. 451(2008) 293-296.
[107] K. T. Ranjit, H. Cohen, I. Willner, S. Bossmann, A. M. Braun, Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants, J. Mater. Sci. 34 (1999) 5273-5280.
[108] J. Domaradzki, D. Kaczmarek, A. Borkowska, D. Schmeisser, S. Mueller, R. Wasielewski, A. Ciszewski, D. Wojcieszak, Influence of annealing on the structure and stoichiometry of europium-doped titanium dioxide thin films, Vacuum 82 (2008).
[109] R. Janes, L. J. Knightley, C. J. Harding, Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing, Dyes Pigm. 62 (2004) 199.
[110] K. V. Baiju, C. P. Sibu, K. Rajesh, P. K. Pillai, P. Mukundan, K. G. K. Warrier, W. Wunderlich, An aqueous sol-gel route to synthesize nanosized lanthana-doped titania having an increased anatase phase stability for photocatalytic application, Mater. Chem. Phys. 90 (2005).
[111] K. C. Heo, C. I. Ok, J. W. Kim, B. K. Moon, The effects of manganese ions and their magnetic properties on the anatase-rutile phase transition of nanocrystalline TiO2: Mn prepared by using the solvothermal method, J. Kor. Phys. Soc. 47 (2005).
[112] R. Arroyo, G. Cordoba, J. Padilla, V. H. Lara, Influence of manganese ions on the anatase- rutile phase transition of TiO2 prepared by the sol-gel process, Mater. Lett. 54 (2002) 397402.
[113] J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, J. R. Morante, Effects of Nb doping on the TiO2 anatase-to-rutile phase transition, J. Appl. Phys. 92 (2002) 853-861.
DOI: 10.1063/1.1487915
[114] J. Craido, C. Real, Mechanism of the inhibiting effect of phosphate on the anatase→ rutile transformation induced by thermal and mechanical treatment of TiO2, J. Chem. Soc: Faraday Trans. 79 (1983) 2765-2771.
DOI: 10.1039/f19837902765
[115] J. Moon, H. Takagi, Y. Fujishiro, M. Awano, Preparation and characterization of the Sbdoped TiO2 photocatalysts, J. Mater. Sci. 36 (2001) 949- 955.
[116] E. Setiawati, K. Kawano, Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2, J. Alloys Compd. 451 (2008) 293-296.
[117] A. Rampaul, I. P. Parkin, S. A. O'Neill, J. DeSouza, A. Mills, N. Elliott, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron 22 (2003) 3544.
[118] A. Jaroenworaluck, W. Sunsaneeyametha, R. Stevens, Surface Characteristics of ZirconiaCoated TiO2 and its Phase Transformation, Key Eng. Mater. 334 (2007) 1101-1104.
[119] M. Hirano, N. Nakahara, K. Ota, O. Tanaike, N. Inagaki, Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions, J. Solid State Chem. 170 (2003).
[120] J. Yang, J. M. F. Fereira, On the titania phase transition by zirconia additive in a sol-gelderived powder, Mater. Res. Bull. 33 (1998) 389-394.
[121] V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible-Light Active Anatase Photocatalyst, Adv. Fun. Mater. 21 (2011) 3744-3752.
[122] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimogigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature 388 (1997) 431432.
DOI: 10.1038/41233
[123] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces Adv. Mater. 10 (1998) 135-138.
DOI: 10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.0.co;2-m
[124] T. Watanabe, K. Hashimoto, A. Fujishima, 1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air (1992).
[125] A. Heller, Chemistry and applications of photocatalytic oxidation of thin organic films, Acc. Chem. Res. 28 (1995) 503-508.
DOI: 10.1021/ar00060a006
[126] S. Sitkiewitz, A. Heller, Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass, New. J. Chem. 20 (1996) 233-241.
[127] H. Honda, A. Ishizaki, R. Soma, K. Hashimoto, A. Fujishima, Application of photocatalytic reactions caused by TiO2 film to improve the maintenance factor of lighting systems, J. Illum. Eng. Soc. Winter (1998) 42-49.
[128] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Japan. J. Appl. Phys. 44 (2005) 8269.
DOI: 10.1143/jjap.44.8269
[129] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC, Inc., Tokyo (1999).
[130] A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches, C. R. Chim. 9 (2006) 750-760.
[131] L. Cassar, Photocatalysis of cementitious materials: clean buildings and clean air MRS Bull. 29 (2004) 328-331.
DOI: 10.1557/mrs2004.99
[132] X.T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Self-cleaning particle coating with antireflection properties, Chem. Mater. 17 (2005) 696-700.
DOI: 10.1021/cm0484201
[133] X. Zhang, A. Fujishima, M. Jin, A.V. Emeline, T. Murakami, Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties, J. Phys. Chem. B. 110 (2006) 25142-25148.
DOI: 10.1021/jp064442u
[134] A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, J. Kiwi, Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation, J. Photochem. Photobiol. A: Chem. 174 (2005) 156-164.
[135] A. Bozzi, T. Yuranova, J. Kiwi, Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature, J. Photochem. Photobiol. A: Chem. 172 (2005) 27-34.