Surface Modification or Doping of WO3 for Enhancing the Photocatalytic Degradation of Organic Pollutant Containing Wastewaters: A Review

Article Preview

Abstract:

Tungsten trioxide (WO3) is an oxygen deficient metal oxide and well known semiconductor with a small band gap of between 2.4 and 2.8 eV. It is also used as a photo-catalyst for degradation of organic pollutants present in aqueous environment. It has stable physico-chemical properties and shows strong absorption of solar spectrum and thus can be used in visible-light driven photocatalysis. WO3 has a conduction band (ECB) of +0.4 V versus NHE (normal hydrogen electrode) at pH = 0. Therefore, pure WO3 has lower light energy conversion efficiency as compared to other widely used photocatalysts such as zinc oxide (ZnO) and titanium oxide (TiO2). This is because the reduction potential of the electrons in WO3 is low due to its low conduction band level. O2 cannot be efficiently trapped in the conduction band electrons to yield superoxide radicals and fast recombination of charge carriers takes place resulting in lesser photocatalytic activity of WO3. However, holes in the valence band (EVB = +3.1 V) are energetically favorably situated to oxidize water to hydrogen. To modify the energy band position and reduce the charge carrier recombination, doping or surface modification of WO3 is necessary. This review article demonstrates the effect of dopants (low band semiconductor catalyst) on the surface modification of WO3 to enhance the photo catalytic activity which helps in degradation of the organic pollutants present in the wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-126

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Singh, V. C. Srivastava, I. D. Mall, Mechanism of dye degradation during electrochemical treatment, J. Phy. Chem. C. 117 (2013) 15229−15240.

DOI: 10.1021/jp405289f

Google Scholar

[2] S. Singh, V. C. Srivastava, I. D. Mall, Electrochemical treatment of dye bearing effluent with different anode-cathode combinations: Mechanistic study and sludge analysis, Ind. Eng. Chem. Res. 53 (2014) 10743-10754.

DOI: 10.1021/ie4042005

Google Scholar

[3] P. R. Potti, V. C. Srivastava, Comparative studies on structural, optical, and textural properties of combustion derived ZnO prepared using various fuels and their photocatalytic activity, Ind. Eng. Chem. Res. 51 (2012) 7948−7956.

DOI: 10.1021/ie300478y

Google Scholar

[4] S. H. Chan, T. Y. Wu, J. C. Juan, C. Y. The, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86 (2011)1130–1158.

DOI: 10.1002/jctb.2636

Google Scholar

[5] Priyanka, V. Subbaramaiah, V. C. Srivastava, I. D. Mall, Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Sep. Purif. Technol. 125 (2014) 284–90.

DOI: 10.1016/j.seppur.2014.01.045

Google Scholar

[6] G. Wang, Y. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications, Nanoscale, 4 (2012) 6682–6691.

DOI: 10.1039/c2nr32222f

Google Scholar

[7] I. S. Cho, Z. B. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, X. L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production, Nano Lett. 11 (2011) 4978–4984.

DOI: 10.1021/nl2029392

Google Scholar

[8] D. Chatterjee, S. D. gupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C – Photochem. Review, 6 (2005) 186–205.

Google Scholar

[9] H. Zhang, G. Chen, D. W. Bahnemann, Photoelectrocatalytic materials for environmental applications, J. Mater. Chem. 19 (2009) 5089–5121.

Google Scholar

[10] P. R. Potti, V. C. Srivastava, Effect of Dopants on ZnO mediated photocatalysis of dye bearing wastewater: A review. Mater. Sci. Forum Vol. 757 (2013) 165-174.

DOI: 10.4028/www.scientific.net/msf.757.165

Google Scholar

[11] W. Mu, X. Xie, X. Li, R. Zhang, Q. Yu, K. Lv, H. Wei, Y. Jian, Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance, RSC Adv. 4 (2014) 36064–36070.

DOI: 10.1039/c4ra04080e

Google Scholar

[12] S. G. Kumar, K.S. R Rao. Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications, Applied Surface Sci. 355 (2015a) 939–958.

DOI: 10.1016/j.apsusc.2015.07.003

Google Scholar

[13] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.

Google Scholar

[14] Y. Zhao, W. Hu, Y. Xia, E. Smith, Y. Zhu, C. Dunnill, D. Gregory, Preparation and characterization of tungsten oxynitride nanowires, J. Mater. Chem. 17 (2007) 4436–4440.

DOI: 10.1039/b709486h

Google Scholar

[15] X. Lou, H. Zeng, An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution, Inorg. Chem. 42 (2003) 6169–6171.

DOI: 10.1021/ic034771q

Google Scholar

[16] H. Qi, B. Wang, J. Liu, A simple method for the synthesis of highly oriented potassium doped tangsten oxide nano waires, Adv. Mater. 15 (2003) 411–414.

DOI: 10.1002/adma.200390094

Google Scholar

[17] J. Su, X. Feng, J. D. Sloppy, L. Guo, C.A. Grimes, Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photo electrochemical properties, Nano Lett. 11 (2011) 203–208.

DOI: 10.1021/nl1034573

Google Scholar

[18] G. Gu, B. Zheng, W. Han, S. Roth, J. Liu, Tungsten oxide nano wires on tungsten substrates, Nano Lett. 2 (2002) 849–851.

DOI: 10.1021/nl025618g

Google Scholar

[19] Z. Gu, Y. Ma, W. Yang, G. Zhang, J. Yao, Self-assembly of highly oriented one-dimensional h-WO3 nanostructures, Chem. Commun. 41 (2005) 3597–3599.

DOI: 10.1039/b505429j

Google Scholar

[20] Y. Z. Jin, Y.Q. Zhu, R. L. D. Whit, N. Yao, R. Ma, P.C. P. Watts, H.W. Kroto, D. R. M. Walton, Simple approaches to quality large-scale tungsten oxide nanoneedles, J. Phys. Chem. B 108 (2004) 15572-15577.

DOI: 10.1021/jp048596q

Google Scholar

[21] G. Hodes, D. Cahen, J. Manassen, Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters, Nature, 260 (1976) 312–313.

DOI: 10.1038/263097a0

Google Scholar

[22] V. Chakrapani, J. Thangala, M. K. Sunkara, WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, 34 (2009) 9050–9059.

DOI: 10.1016/j.ijhydene.2009.09.031

Google Scholar

[23] G. M. Wang, Y. C. ling, H. Y. Wang, X. Y. Yang, C. C. Wang, J. Z. Zhang, Y. Li, Hydrogen-treated WO3nanoflakes show enhanced photostability, Energy Environ. Sci. 5 (2012) 6180–6187.

DOI: 10.1039/c2ee03158b

Google Scholar

[24] R. Liu, Y. J. Lin, L. Y. Chou, S. W. Sheehan, W. S. He, F. Zhang, H. J. M. Hou, D. W. Wang, Angew. Chem. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst, Int. Ed. 50 (2011).

DOI: 10.1002/anie.201004801

Google Scholar

[25] W. Smith, A. Wolcott, R. C. F. morris, J. Z. Zhang, Y. P. Zhao, Quasi-core-shell TiO2/WO3 and TiO2/WO3 nanorod arrays fabricated by glancing angle deposition for solar water splitting, J. Mater. Chem. 21 (2011) 10792–10800.

DOI: 10.1039/c1jm11629k

Google Scholar

[26] X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, Z. L. Wang, Three-dimensional WO3 nanostructures on carbon paper: photo-electrochemical property and visible light driven photocatalysis. Chem. Commun. 47 (2011).

DOI: 10.1039/c1cc10389j

Google Scholar

[27] Y. Zhao, Z. C. Feng, Y. Liang, H. W. Sheng, Laser-induced coloration of WO3, Appl. Phys. Lett. 71 (1997) 2227–2229.

DOI: 10.1063/1.120064

Google Scholar

[28] J. A. Seabold, K. S. Choi, Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photo anode Chem. Mater. 23 (2011) 1105–1112.

DOI: 10.1021/cm1019469

Google Scholar

[29] P. Roussel, P. Labbe, D. Groult, Symmetry and twins in the monophosphate tungsten bronze series (PO2)4(WO3)2m(2 <m <14), ActaCryst B. 56 (2000) 377-391.

Google Scholar

[30] S. G. Kumar, K. S. R. K. Rao, Zinc oxide based photocatalysis: tailoring surfacebulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv. 5 (2015b) 3306–3351.

DOI: 10.1039/c4ra13299h

Google Scholar

[31] S. Singh, V. C. Srivastava, T. K. Mondal, I. D. Mall Synthesis of different crystallographic Al2O3 nano-materials from solid waste for application in dye degradation. RSC Adv. 4 (2014) 50801–50810.

DOI: 10.1039/c4ra08842e

Google Scholar

[32] B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem. 29 (1979) 429-434.

DOI: 10.1016/0022-4596(79)90199-3

Google Scholar

[33] S. Balaji, Y. Djaoued, A. -S. Albert, R. Z. Ferguson, R. Bruning, Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the li ion occupancy of four-coordinated square windows, Chem. Mater. 21 (2009) 1381–1389.

DOI: 10.1021/cm8034455

Google Scholar

[34] M. Boulova, G. Lucazeau, Crystallite nanosizee¡ect on the structural transitions of WO3 studied by Raman spectroscopy, J. Solid State Chem. 167 (2002) 425–434.

DOI: 10.1006/jssc.2002.9649

Google Scholar

[35] A. Z. Sadek, H. Zheng, K. Latham, W. Wlodarski, K. Kalantar-zadeh, Anodization of Ti thin film deposited on ITO, Langmuir 25 (2009) 509-514.

DOI: 10.1021/la802456r

Google Scholar

[36] R. Liu, Y. Lin, L. -Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst, Angew. Chem. Int. Ed. 50 (2011) 499 –502.

DOI: 10.1002/anie.201004801

Google Scholar

[37] L. M. Kuti, S. S. Bhella, V. Thangadurai, Revisiting tungsten trioxide hydrates (TTHs) synthesis - is there anything new?, Inorg. Chem. Inorg. Chem. 48 (2009) 6804–6811.

DOI: 10.1021/ic900738m

Google Scholar

[38] M. Gillet, K. Aguir, C. Lemire, E. Gillet, K. Schierbaum, The structure and electrical conductivity of vacuum-annealed WO3 thin films, Thin Solid Films 467 (2004) 239– 246.

DOI: 10.1016/j.tsf.2004.04.018

Google Scholar

[39] S. K. Gullapalli, R. S. Vemuri, C. V. Ramana, Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films, Applied Phys. Lett. 96 (2010)171903-3.

DOI: 10.1063/1.3421540

Google Scholar

[40] I. Aslam, C. Cao, W. S. Khan, M. Tanveer, M. Abid, F. Idrees, R. Riasat, M. Tahir, F. K. Butta, Z. Ali, Synthesis of three-dimensional WO3 octahedra: characterization, optical and efficient photocatalytic properties, RSC Adv. 4 (2014).

DOI: 10.1039/c4ra05724d

Google Scholar

[41] J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan, M. A. kumar, Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity, RSC Adv., 5 (2015) 52718–52725.

DOI: 10.1039/c5ra06512g

Google Scholar

[42] D. Monllor-Satoca, L. Borja, A. Rodes, R. Gomez, P. Salvador, Photo electrochemical behavior of nano structured WO3 thin-film electrodes: The oxidation of formic acid Chem. Phys. Chem. 7 (2006) 2540 – 2551.

DOI: 10.1002/cphc.200600379

Google Scholar

[43] M. Hepel, J. Luo, Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes, Electrochim. Acta 47 (2001) 729-744.

DOI: 10.1016/s0013-4686(01)00753-8

Google Scholar

[44] M. A. Gondal, A. Bagabas, A. Dastageer, A. Khalil, Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO3, J. Molecular Catalysis A: Chem. 323 (2010) 78–83.

DOI: 10.1016/j.molcata.2010.03.019

Google Scholar

[45] W. Sun, M.T. Yeung, A. T. Lech, C. -W. Lin, C. Lee, T. Li, X. Duan, J. Zhou, R. B. Kaner, High Surface area tunnels in hexagonal WO3, Nano Lett. 2015, 15, 4834−4838.

DOI: 10.1021/acs.nanolett.5b02013

Google Scholar

[46] R. Memming, Semiconductor Electrochemistry, WILEY, Weinheim Germany, (2001).

Google Scholar

[47] C. Santato, M. Ulmann, J. Augustynski, Enhanced visible light conversion efficiency using nanocrystallineWO3films, Adv. Mater. 13 (2001) 511-514.

DOI: 10.1002/1521-4095(200104)13:7<511::aid-adma511>3.0.co;2-w

Google Scholar

[48] A. B. Djurisic, Y. H. Leung, A. M. C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Mater. Horiz. 1 (2014) 400–410.

DOI: 10.1039/c4mh00031e

Google Scholar

[49] Z. Gu, Y. Ma, W. Yang, G. Zhang, J. Yao, Self-assembly of highly oriented one-dimensional h-WO3 nanostructures, Chem. Commun. 2005, 3597–3599.

DOI: 10.1039/b505429j

Google Scholar

[50] L. Yang, H. Zhou, T. Fan, D. Zhang, Artificial, Semiconductor photocatalysts for wateroxidation: current status and challenges, Phys. Chem. Chem. Phys. 16 (2014) 6810-6826.

DOI: 10.1039/c4cp00246f

Google Scholar

[51] S. Wu, J. Fang, W. Xu, C. Cen. Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O3 enhanced by Pr3+ doping. J. Chem. Technol. Biotechnol. 2013; 88: 1828–1835.

DOI: 10.1002/jctb.4034

Google Scholar

[52] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, L. Zan, Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation, J. Solid State Chem. 194 (2012) 250–256.

DOI: 10.1016/j.jssc.2012.05.016

Google Scholar

[53] Q. -H. Li, L. -M. Wang, D. -Q. Chu, X. -Z. Yang, Z. -Y. Zhang, Cylindrical stacks and flower-like tungsten oxide microstructures: Controllable synthesis and photocatalytic properties, Ceramics Int. 40(2014)4969–4973.

DOI: 10.1016/j.ceramint.2013.09.115

Google Scholar

[54] D. Sanchez Martinez, A. Martinez-dela Cruz, E. Lopez Cuellar, Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent, Applied Catalysis A: General 398 (2011) 179–186.

DOI: 10.1016/j.apcata.2011.03.034

Google Scholar

[55] Y. Zheng, G. Chen, Y. Yu, J. Sun, Y. Zhou, J. Pei, Template and surfactant free synthesis of hierarchical WO3·0. 33H2O via a facile solvothermal route for photo-catalytic RhB degradation, Cryst. Eng. Comm. 16 (2014) 6107–6113.

DOI: 10.1039/c4ce00361f

Google Scholar

[56] C. Feng, S. Wang, B. Geng, Ti (IV) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance, Nanoscale, 3 (2011) 3695–3699.

DOI: 10.1039/c1nr10460h

Google Scholar

[57] H. Liu, T. Peng, D. Ke, Z. Peng, C. Yan, Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles, Mater. Chem. Phys. 104 (2007) 377–383.

DOI: 10.1016/j.matchemphys.2007.03.028

Google Scholar

[58] A. M. Cruz, D. S. Martınez, E. L. Cuellar, Synthesis and characterization of WO3 nanoparticles prepared by theprecipitation method: Evaluation of photocatalytic activity under Vis-irradiation, Solid State Sci. 12 (2010) 88–94.

DOI: 10.1016/j.solidstatesciences.2009.10.010

Google Scholar

[59] M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, W. Ued, Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, andtheir structural characterization and application as photocatalysts under visible light irradiation, J. Mater. Chem. 20 (2010).

DOI: 10.1039/b922416e

Google Scholar

[60] Y. Liu, Q. Li, S. Gao, J. K. Shang, Template-free solvo-thermal synthesis of WO3/WO3·H2O hollow spheres and their enhanced photocatalytic activity from the mixture phase effect, Cryst. Eng. Comm. 16 (2014) 7493–7501.

DOI: 10.1039/c4ce00857j

Google Scholar

[61] G. Xin, W. Guo, T. Ma, Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution, Applied Surface Sci. 256 (2009) 165–169.

DOI: 10.1016/j.apsusc.2009.07.102

Google Scholar

[62] J. Huang, X. Xu, C. Gu, G. Fu, W. Wang, J. Liu. Flower-like and hollow sphere-like WO3 porous nanostructures: Selective synthesis and their photo catalysis property, Mater. Res. Bulletin, 47 (2012) 3224–3232.

DOI: 10.1016/j.materresbull.2012.08.009

Google Scholar

[63] J. Huang, L. Xiao, X. Yang, WO3 nanoplates, hierarchical flower-like assemblies and their photocatalytic properties, Mater. Res. Bulletin 48 (2013) 2782–2785.

DOI: 10.1016/j.materresbull.2013.04.022

Google Scholar

[64] G. Xi, Y. Yan, Q. Ma, J. Li, H. Yang, X. Lu, C. Wang. Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible-light photo catalysis, Chem. Eur. J. 18 (2012) 13949 – 13953.

DOI: 10.1002/chem.201202312

Google Scholar

[65] J. Yin, H. Cao, J. Zhang, M. Qu, Z. Zhou, Synthesis and applications of γ‑tungsten oxide hierarchical nanostructures. Cryst. Growth Design13 (2013) 759−769.

DOI: 10.1021/cg301469u

Google Scholar

[66] J. Shi, G. Hu, R. Cong, H. Bu, N. Dai. Controllable synthesis of WO3. nH2O microcrystals with various morphologies by a facile inorganic route and their photocatalytic activities, New J. Chem. 37 (2013) 1538—1544.

DOI: 10.1039/c3nj41159a

Google Scholar

[67] D. Tanaka, Y. Oaki, H. Imai, Enhanced photocatalytic activity of quantum-confined tungsten trioxide nanoparticles in mesoporous silica, Chem. Commun. 46 (2010) 5286–5288.

DOI: 10.1039/c0cc00540a

Google Scholar

[68] I. M. Szilagyi B. Forizs, O. Rosseler, A. Szegedi, P. Nemeth, P. Kiraly, G. Tarkanyi, B. Vajna, K. Varga-Josepovits, K. Laszlo A. L. Toth, P. Baranyai, M. Leskela. WO3 photocatalysts: Influence of structure and composition. J. Catalysis 294 (2012).

DOI: 10.1016/j.jcat.2012.07.013

Google Scholar

[69] T. Mano, S. Nishimoto, Y. Kameshim, M. Miyake, Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation, Chem. Eng. J. 264 (2015) 221–229.

DOI: 10.1016/j.cej.2014.11.088

Google Scholar

[70] H. Kim, H. -Y. Yoo, S. Hong, S. Lee, S. Lee, B. -S. Park, H. Park, C. Lee, J. Lee, Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation, Applied Catalysis B: Environ. 162 (2015) 515–523.

DOI: 10.1016/j.apcatb.2014.07.019

Google Scholar

[71] H. Lee, J. Choi, S. Lee, S. -T. Yun, C. Lee, J. Lee, Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent, Applied Catalysis B: Environ. 138– 139 (2013) 311– 317.

DOI: 10.1016/j.apcatb.2013.03.006

Google Scholar

[72] D. Sanchez-Martınez, A. Martınez-de la Cruz, E. Lopez-Cuellar, Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties, Mater. Res. Bulletin 48 (2013) 691–697.

DOI: 10.1016/j.materresbull.2012.11.024

Google Scholar

[73] L. G. Devi, B. N. Murthy, S. G. Kumar, Heterogeneous photo catalytic degradation of anionic and cationic dyesover TiO2 and TiO2 doped with Mo6+ ions under solar light: Correlation of dye structure and its adsorptive tendency on the degradation rate, Chemosphere 76 (2009).

DOI: 10.1016/j.chemosphere.2009.04.005

Google Scholar

[74] L. –H. Chi, X. Tang, L. Weavers, Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution, Environ. Sci. Technol. 38 (2004) 6875-6880.

DOI: 10.1021/es049155n

Google Scholar

[75] Y.F. Rao, W. Chu, Y. R. Wang. Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension: Role of alcohol and sulfate radicals in the degradation pathway, Applied Catalysis A: General 468 (2013) 240– 249.

DOI: 10.1016/j.apcata.2013.08.050

Google Scholar

[76] W. Chu, Y.F. Rao, Photocatalytic oxidation of monuron in the suspension of WO3 under the irradiation of UV–visible light, Chemosphere 86 (2012) 1079–1086.

DOI: 10.1016/j.chemosphere.2011.11.062

Google Scholar

[77] M. Qamar, M. A. Gondal, Z. H. Yamani, Removal of Rhodamine 6G induced by laser and catalyzed by Pt/WO3nanocomposite, Catalysis Commun. 11 (2010) 768–772.

DOI: 10.1016/j.catcom.2010.02.012

Google Scholar

[78] A. -W. Xu, Y. Gao, H. -Q. Liu, The Preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catalysis 207, (2002) 151–157.

DOI: 10.1006/jcat.2002.3539

Google Scholar

[79] R. Abe, H. Takami,N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide, J. Am. Chem. Soc. 130 (2008) 7780–7781.

DOI: 10.1021/ja800835q

Google Scholar

[80] G.W. Ho, K. J. Chua, D. R. Siow, Metal loaded WO3 particles for comparative studies of photocatalysis and electrolysis solar hydrogen production, Chem. Eng. J. 181– 182 (2012) 661– 666.

DOI: 10.1016/j.cej.2011.12.039

Google Scholar

[81] S. Sun, W. Wang, S. Zeng, M. Shang and L. Zhang, Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation., J. Hazard. Mater. 2010, 178, 427-433.

DOI: 10.1016/j.jhazmat.2010.01.098

Google Scholar

[82] S. O. Alfaro, A. Martinez-de la Cruz, Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by co-precipitation method. Applied Catalysis A: General 383 (2010) 128–133.

DOI: 10.1016/j.apcata.2010.05.034

Google Scholar

[83] Z. Cui, D. Zeng, T. Tang, J. Liu, C. Xie, Processing-structure-property relationship of Bi2WO6 nanostructures as visible-light-driven photocatalyst, J . Hazard. Mater. 183 (2010) 211–217.

DOI: 10.1016/j.jhazmat.2010.07.013

Google Scholar

[84] T. Saison, P. Gras, N. Chemin, C. Chaneac, O. Durupthy,V. Brezova, C. Colbeau-Justin, J. -P. Jolivet, New Insights into Bi2WO6 Properties as a Visible-Light Photocatalyst, J. Phys. Chem. C 117 (2013) 22656−22666.

DOI: 10.1021/jp4048192

Google Scholar

[85] D.W. Hwang, J. Kim, T. J. Park, J. S. Lee. Mg-doped WO3 as a novel photocalatyst for visible light induced water splitting. Catalysis Letters, 2012, 80, 53-57.

Google Scholar

[86] A. Hameed, M.A. Gondal, Z .H. Yamani, Effect of transition metal doping on photocatalytic activity of WO3for water splitting under laser illumination: role of 3d-orbitals, Catalysis Commun. 5 (2004) 715–719.

DOI: 10.1016/j.catcom.2004.09.002

Google Scholar

[87] X. Wang, L. Pang, X. Hu, N. Han, Fabrication of ion doped WO3 photocatalysts through bulk and surface doping, J. Environ, Sci. 118, 12035 (2015)76-82.

DOI: 10.1016/j.jes.2015.04.007

Google Scholar

[88] A. K. L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, One step of WO3/TiO2 nanocomposites with enhanced photocatalytic activity, Appl. Catal. B – Environ. 91 (2009) 397–405.

DOI: 10.1016/j.apcatb.2009.06.005

Google Scholar

[89] H. Widiyandari, A. Purwanto, R. Balgis, T. Ogi, K. Okuyam, CuO/WO3 and Pt/WO3nanocatalysts for efficient pollutant degradation using visible light irradiation, Chem. Eng. J. 180 (2012) 323– 329.

DOI: 10.1016/j.cej.2011.10.095

Google Scholar

[90] J. -W. Shi, J. -T. Zheng, Y. Hu, Y. -C. Zhao, Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2, Mater. Chem. Phys. 106 (2007) 247–249.

DOI: 10.1016/j.matchemphys.2007.05.042

Google Scholar

[91] J. -W. Shi, Preparation of Fe (III) and Ho (III) co-doped TiO2 films loaded on activated carbon fibers and their photo-catalytic activities, Chem. Eng. J. 151 (2009) 241–246.

DOI: 10.1016/j.cej.2009.02.034

Google Scholar

[92] X. C. Song, E Yang, G. Liu, Y. Zhang, Z. S. Liu, H. F. Chen, Y. Wang, Preparation and photo catalytic activity of Mo-doped WO3 nanowires, J. Nanopart. Res. 12 (2010) 2813–2819.

DOI: 10.1007/s11051-010-9859-8

Google Scholar

[93] H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities, Applied Catalysis B: Environ. 166–167 (2015)112–120.

DOI: 10.1016/j.apcatb.2014.11.020

Google Scholar

[94] H. Irie, S. Miura, K. Kamiy, K. Hashimoto, Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 andWO3 photocatalysts, Chem. Phys. Letters 457 (2008) 202–205.

DOI: 10.1016/j.cplett.2008.04.006

Google Scholar

[95] Z. Wen, W. Wu, Z. Liu, H. Zhang, J. Lian, J. Chen, Ultrahigh-efficiency photocatalysts based on mesoporous Pt–WO3 nanohybrids, Phys. Chem. Chem. Phys. 15 (2013) 6773—6778.

DOI: 10.1039/c3cp50647a

Google Scholar

[96] X. F. Cheng, W. H. Leng, D. P. Liu, J. Q. Zhang, C. N. Cao. Enhanced photoelectrocatalytic performance of Zn-doped WO3photocatalysts for nitrite ions degradation under visible light, Chemosphere 68 (2007) 1976–(1984).

DOI: 10.1016/j.chemosphere.2007.02.010

Google Scholar

[97] B. D. Chen, J. Ye, Hierarchical WO3 Hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties, Adv. Funct. Mater. 18 (2008) 1922–(1928).

DOI: 10.1002/adfm.200701468

Google Scholar

[98] Z. S. Seddigi, Removal of Alizarin Yellow dye from water using zinc doped WO3 catalyst, Bull. Environ. Contam. Toxico. l 84 (2010)564–567.

DOI: 10.1007/s00128-010-9995-y

Google Scholar

[99] M. Takeuchi, Y. Shimizu, H. Yamagaw, T. Nakamuro, M. Anpo. Preparation of the visible light responsive N3−-doped WO3 photocatalyst by a thermal decomposition of ammonium para tungstate Applied Catalysis B: Environmental 110 (2011) 1– 5.

DOI: 10.1016/j.apcatb.2011.08.004

Google Scholar

[100] Y. Liu, Z. Li, H. Lv, H. Tang, X. Xing, Synthesis of hierarchical Bi2WO6 microspheres with high visible-light-driven photocatalytic activities by sol–gel-hydro thermal route. Mater. Letters 108(2013)84–87.

DOI: 10.1016/j.matlet.2013.06.064

Google Scholar

[101] A. Purwanto, H. Widiyandari, T. Ogi, K. Okuyama, Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation, Catalysis Commun. 12 (2011) 525–529.

DOI: 10.1016/j.catcom.2010.11.020

Google Scholar

[102] D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sund, L. Gao, Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates, Nanoscale, 4 (2012) 5431–5439.

DOI: 10.1039/c2nr31030a

Google Scholar

[103] J. Kim, C. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that Generates OH radicals under visible light, Environ. Sci. Technol. 44 (2010) 6849–6854.

DOI: 10.1021/es101981r

Google Scholar

[104] M. Qamar, M.A. Gondal, Z.H. Yamani, Removal of Rhodamine 6G induced by laser and catalyzed by Pt/WO3nanocomposite. Catalysis Communications 11 (2010) 768–772.

DOI: 10.1016/j.catcom.2010.02.012

Google Scholar

[105] Q. Xue, Y. Liu, Q. Zhou, M. Utsumi, Z. Zhang, N. Sugiur, Photocatalytic degradation of geosmin by Pd nanoparticle modified WO3catalyst under simulated solar light, Chem. Eng. J. 283 (2016) 614–621.

DOI: 10.1016/j.cej.2015.08.016

Google Scholar

[106] C. Xu, X. Wei, Y. Guo, H. Wu, Z. Ren, G. Xu, Surfactant-free synthesis of Bi2WO6 multilayered disks with visible-light-induced photocatalytic activity. Mater. Res. Bull. 44(2009) 1635–1641.

DOI: 10.1016/j.materresbull.2009.04.012

Google Scholar

[107] W. Cong, C. Lin, Preparation, spectral characteristics and photocatalytic activity of Eu3+-doped WO3 nanoparticles, J. Rare Earths, 29 (2011) 727-731.

DOI: 10.1016/s1002-0721(10)60531-5

Google Scholar

[108] S. L. Liew, Z. Zhang, T.W. G. Goh, G.S. Subramanian, H. L. D. Seng, T.S. A. Hora, H. -K. Luo, D.Z. Chi, Int. J. hydrogen energy 39 (2014) 4291-4298.

DOI: 10.1016/j.ijhydene.2013.12.204

Google Scholar

[109] Z. Zhang, W. Wang, M. Shang, W. Yin, Low-temperature combustion synthesis of Bi2WO6 nano particles as a visible-light driven photocatalyst. J. Hazard. Mater. 177 (2010) 1013–1018.

DOI: 10.1016/j.jhazmat.2010.01.020

Google Scholar

[110] S. M. Lopez, M. C. Hidalgo, J. A. Navio, G. Colon, Novel Bi2WO6-TiO2 hetero structures for Rhodamine B degradation under sunlike irradiation, J. Hazard. Mater. 185, (2011)1425–1434.

DOI: 10.1016/j.jhazmat.2010.10.065

Google Scholar

[111] G. Xin, W. Guo, T. Ma, Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution, Applied Surface Sci. 256 (2009) 165–169.

DOI: 10.1016/j.apsusc.2009.07.102

Google Scholar

[112] A. Fujii, Z. Meng, C. Yogi, T. Hashishin, T. Sanada, K. Kojim, Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic degradation of methylene blue, Surface Coatings Technol. 271 (2015) 251–258.

DOI: 10.1016/j.surfcoat.2014.11.070

Google Scholar

[113] M. Miyauchi, Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles, Phys. Chem. Chem. Phys. 10 (2008) 6258–6265.

DOI: 10.1039/b807426g

Google Scholar

[114] L. G. Devi, N. Kottam, S. G. Kumar, Preparation and characterization of Mn-doped titanates with a bicrystalline framework: correlation of the crystallite size with the synergistic effect on the photocatalytic activity, J. Phys. Chem. C 113 (2009).

DOI: 10.1021/jp903711a

Google Scholar

[115] J. Yu, L. Yue, S. Liu, B. Huang, X. Zhang, Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres, J. Colloid and Interface Sci. 334 (2009) 58–64.

DOI: 10.1016/j.jcis.2009.03.034

Google Scholar

[116] Y. Shiraishi, Y. Sugano, S. Ichikawa, T. Hirai, Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles, Catal. Sci. Technol. 2 (2012) 400–405.

DOI: 10.1039/c1cy00331c

Google Scholar

[117] O. Tomita, B. Ohtani, R. Abe, Highly selective phenol production from benzene on a platinum-loaded tungsten oxide photocatalyst with water and molecular oxygen: selective oxidation of water by holes for generating hydroxyl radical as the predominant source of the hydroxyl group, Catal. Sci. Technol. 4 (2014).

DOI: 10.1039/c4cy00445k

Google Scholar

[118] B. Ma, J. Guo, W. -L. Dai, K. Fan, Ag-AgCl/WO3 hollow sphere with flower-like structure and superior visible photocatalytic activity, Applied Catalysis B: Environ. 123– 124 (2012) 193– 199.

DOI: 10.1016/j.apcatb.2012.04.029

Google Scholar

[119] J. Cao, B. Luo, H. Lin, S. Chen, Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation, J. Hazard. Mater. 190 (2011) 700–706.

DOI: 10.1016/j.jhazmat.2011.03.112

Google Scholar

[120] R. Adhikari, G. Gyawali, T. Sekino, S. W. Lee, Microwave assisted hydrothermal synthesis of Ag/AgCl/WO3photocatalyst and its photocatalytic activity under simulated solar light, J. Solid State Chem. 197(2013)560–565.

DOI: 10.1016/j.jssc.2012.08.012

Google Scholar