p.45
p.58
p.78
p.94
p.105
p.127
p.139
p.147
p.156
Surface Modification or Doping of WO3 for Enhancing the Photocatalytic Degradation of Organic Pollutant Containing Wastewaters: A Review
Abstract:
Tungsten trioxide (WO3) is an oxygen deficient metal oxide and well known semiconductor with a small band gap of between 2.4 and 2.8 eV. It is also used as a photo-catalyst for degradation of organic pollutants present in aqueous environment. It has stable physico-chemical properties and shows strong absorption of solar spectrum and thus can be used in visible-light driven photocatalysis. WO3 has a conduction band (ECB) of +0.4 V versus NHE (normal hydrogen electrode) at pH = 0. Therefore, pure WO3 has lower light energy conversion efficiency as compared to other widely used photocatalysts such as zinc oxide (ZnO) and titanium oxide (TiO2). This is because the reduction potential of the electrons in WO3 is low due to its low conduction band level. O2 cannot be efficiently trapped in the conduction band electrons to yield superoxide radicals and fast recombination of charge carriers takes place resulting in lesser photocatalytic activity of WO3. However, holes in the valence band (EVB = +3.1 V) are energetically favorably situated to oxidize water to hydrogen. To modify the energy band position and reduce the charge carrier recombination, doping or surface modification of WO3 is necessary. This review article demonstrates the effect of dopants (low band semiconductor catalyst) on the surface modification of WO3 to enhance the photo catalytic activity which helps in degradation of the organic pollutants present in the wastewater.
Info:
Periodical:
Pages:
105-126
Citation:
Online since:
May 2016
Authors:
Keywords:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] S. Singh, V. C. Srivastava, I. D. Mall, Mechanism of dye degradation during electrochemical treatment, J. Phy. Chem. C. 117 (2013) 15229−15240.
DOI: 10.1021/jp405289f
[2] S. Singh, V. C. Srivastava, I. D. Mall, Electrochemical treatment of dye bearing effluent with different anode-cathode combinations: Mechanistic study and sludge analysis, Ind. Eng. Chem. Res. 53 (2014) 10743-10754.
DOI: 10.1021/ie4042005
[3] P. R. Potti, V. C. Srivastava, Comparative studies on structural, optical, and textural properties of combustion derived ZnO prepared using various fuels and their photocatalytic activity, Ind. Eng. Chem. Res. 51 (2012) 7948−7956.
DOI: 10.1021/ie300478y
[4] S. H. Chan, T. Y. Wu, J. C. Juan, C. Y. The, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86 (2011)1130–1158.
DOI: 10.1002/jctb.2636
[5] Priyanka, V. Subbaramaiah, V. C. Srivastava, I. D. Mall, Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Sep. Purif. Technol. 125 (2014) 284–90.
[6] G. Wang, Y. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications, Nanoscale, 4 (2012) 6682–6691.
DOI: 10.1039/c2nr32222f
[7] I. S. Cho, Z. B. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, X. L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production, Nano Lett. 11 (2011) 4978–4984.
DOI: 10.1021/nl2029392
[8] D. Chatterjee, S. D. gupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C – Photochem. Review, 6 (2005) 186–205.
[9] H. Zhang, G. Chen, D. W. Bahnemann, Photoelectrocatalytic materials for environmental applications, J. Mater. Chem. 19 (2009) 5089–5121.
[10] P. R. Potti, V. C. Srivastava, Effect of Dopants on ZnO mediated photocatalysis of dye bearing wastewater: A review. Mater. Sci. Forum Vol. 757 (2013) 165-174.
[11] W. Mu, X. Xie, X. Li, R. Zhang, Q. Yu, K. Lv, H. Wei, Y. Jian, Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance, RSC Adv. 4 (2014) 36064–36070.
DOI: 10.1039/c4ra04080e
[12] S. G. Kumar, K.S. R Rao. Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications, Applied Surface Sci. 355 (2015a) 939–958.
[13] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
[14] Y. Zhao, W. Hu, Y. Xia, E. Smith, Y. Zhu, C. Dunnill, D. Gregory, Preparation and characterization of tungsten oxynitride nanowires, J. Mater. Chem. 17 (2007) 4436–4440.
DOI: 10.1039/b709486h
[15] X. Lou, H. Zeng, An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution, Inorg. Chem. 42 (2003) 6169–6171.
DOI: 10.1021/ic034771q
[16] H. Qi, B. Wang, J. Liu, A simple method for the synthesis of highly oriented potassium doped tangsten oxide nano waires, Adv. Mater. 15 (2003) 411–414.
[17] J. Su, X. Feng, J. D. Sloppy, L. Guo, C.A. Grimes, Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photo electrochemical properties, Nano Lett. 11 (2011) 203–208.
DOI: 10.1021/nl1034573
[18] G. Gu, B. Zheng, W. Han, S. Roth, J. Liu, Tungsten oxide nano wires on tungsten substrates, Nano Lett. 2 (2002) 849–851.
DOI: 10.1021/nl025618g
[19] Z. Gu, Y. Ma, W. Yang, G. Zhang, J. Yao, Self-assembly of highly oriented one-dimensional h-WO3 nanostructures, Chem. Commun. 41 (2005) 3597–3599.
DOI: 10.1039/b505429j
[20] Y. Z. Jin, Y.Q. Zhu, R. L. D. Whit, N. Yao, R. Ma, P.C. P. Watts, H.W. Kroto, D. R. M. Walton, Simple approaches to quality large-scale tungsten oxide nanoneedles, J. Phys. Chem. B 108 (2004) 15572-15577.
DOI: 10.1021/jp048596q
[21] G. Hodes, D. Cahen, J. Manassen, Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters, Nature, 260 (1976) 312–313.
DOI: 10.1038/263097a0
[22] V. Chakrapani, J. Thangala, M. K. Sunkara, WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, 34 (2009) 9050–9059.
[23] G. M. Wang, Y. C. ling, H. Y. Wang, X. Y. Yang, C. C. Wang, J. Z. Zhang, Y. Li, Hydrogen-treated WO3nanoflakes show enhanced photostability, Energy Environ. Sci. 5 (2012) 6180–6187.
DOI: 10.1039/c2ee03158b
[24] R. Liu, Y. J. Lin, L. Y. Chou, S. W. Sheehan, W. S. He, F. Zhang, H. J. M. Hou, D. W. Wang, Angew. Chem. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst, Int. Ed. 50 (2011).
[25] W. Smith, A. Wolcott, R. C. F. morris, J. Z. Zhang, Y. P. Zhao, Quasi-core-shell TiO2/WO3 and TiO2/WO3 nanorod arrays fabricated by glancing angle deposition for solar water splitting, J. Mater. Chem. 21 (2011) 10792–10800.
DOI: 10.1039/c1jm11629k
[26] X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, Z. L. Wang, Three-dimensional WO3 nanostructures on carbon paper: photo-electrochemical property and visible light driven photocatalysis. Chem. Commun. 47 (2011).
DOI: 10.1039/c1cc10389j
[27] Y. Zhao, Z. C. Feng, Y. Liang, H. W. Sheng, Laser-induced coloration of WO3, Appl. Phys. Lett. 71 (1997) 2227–2229.
DOI: 10.1063/1.120064
[28] J. A. Seabold, K. S. Choi, Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photo anode Chem. Mater. 23 (2011) 1105–1112.
DOI: 10.1021/cm1019469
[29] P. Roussel, P. Labbe, D. Groult, Symmetry and twins in the monophosphate tungsten bronze series (PO2)4(WO3)2m(2 <m <14), ActaCryst B. 56 (2000) 377-391.
[30] S. G. Kumar, K. S. R. K. Rao, Zinc oxide based photocatalysis: tailoring surfacebulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv. 5 (2015b) 3306–3351.
DOI: 10.1039/c4ra13299h
[31] S. Singh, V. C. Srivastava, T. K. Mondal, I. D. Mall Synthesis of different crystallographic Al2O3 nano-materials from solid waste for application in dye degradation. RSC Adv. 4 (2014) 50801–50810.
DOI: 10.1039/c4ra08842e
[32] B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem. 29 (1979) 429-434.
[33] S. Balaji, Y. Djaoued, A. -S. Albert, R. Z. Ferguson, R. Bruning, Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the li ion occupancy of four-coordinated square windows, Chem. Mater. 21 (2009) 1381–1389.
DOI: 10.1021/cm8034455
[34] M. Boulova, G. Lucazeau, Crystallite nanosizee¡ect on the structural transitions of WO3 studied by Raman spectroscopy, J. Solid State Chem. 167 (2002) 425–434.
[35] A. Z. Sadek, H. Zheng, K. Latham, W. Wlodarski, K. Kalantar-zadeh, Anodization of Ti thin film deposited on ITO, Langmuir 25 (2009) 509-514.
DOI: 10.1021/la802456r
[36] R. Liu, Y. Lin, L. -Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst, Angew. Chem. Int. Ed. 50 (2011) 499 –502.
[37] L. M. Kuti, S. S. Bhella, V. Thangadurai, Revisiting tungsten trioxide hydrates (TTHs) synthesis - is there anything new?, Inorg. Chem. Inorg. Chem. 48 (2009) 6804–6811.
DOI: 10.1021/ic900738m
[38] M. Gillet, K. Aguir, C. Lemire, E. Gillet, K. Schierbaum, The structure and electrical conductivity of vacuum-annealed WO3 thin films, Thin Solid Films 467 (2004) 239– 246.
[39] S. K. Gullapalli, R. S. Vemuri, C. V. Ramana, Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films, Applied Phys. Lett. 96 (2010)171903-3.
DOI: 10.1063/1.3421540
[40] I. Aslam, C. Cao, W. S. Khan, M. Tanveer, M. Abid, F. Idrees, R. Riasat, M. Tahir, F. K. Butta, Z. Ali, Synthesis of three-dimensional WO3 octahedra: characterization, optical and efficient photocatalytic properties, RSC Adv. 4 (2014).
DOI: 10.1039/c4ra05724d
[41] J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan, M. A. kumar, Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity, RSC Adv., 5 (2015) 52718–52725.
DOI: 10.1039/c5ra06512g
[42] D. Monllor-Satoca, L. Borja, A. Rodes, R. Gomez, P. Salvador, Photo electrochemical behavior of nano structured WO3 thin-film electrodes: The oxidation of formic acid Chem. Phys. Chem. 7 (2006) 2540 – 2551.
[43] M. Hepel, J. Luo, Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes, Electrochim. Acta 47 (2001) 729-744.
[44] M. A. Gondal, A. Bagabas, A. Dastageer, A. Khalil, Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO3, J. Molecular Catalysis A: Chem. 323 (2010) 78–83.
[45] W. Sun, M.T. Yeung, A. T. Lech, C. -W. Lin, C. Lee, T. Li, X. Duan, J. Zhou, R. B. Kaner, High Surface area tunnels in hexagonal WO3, Nano Lett. 2015, 15, 4834−4838.
[46] R. Memming, Semiconductor Electrochemistry, WILEY, Weinheim Germany, (2001).
[47] C. Santato, M. Ulmann, J. Augustynski, Enhanced visible light conversion efficiency using nanocrystallineWO3films, Adv. Mater. 13 (2001) 511-514.
DOI: 10.1002/1521-4095(200104)13:7<511::aid-adma511>3.0.co;2-w
[48] A. B. Djurisic, Y. H. Leung, A. M. C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Mater. Horiz. 1 (2014) 400–410.
DOI: 10.1039/c4mh00031e
[49] Z. Gu, Y. Ma, W. Yang, G. Zhang, J. Yao, Self-assembly of highly oriented one-dimensional h-WO3 nanostructures, Chem. Commun. 2005, 3597–3599.
DOI: 10.1039/b505429j
[50] L. Yang, H. Zhou, T. Fan, D. Zhang, Artificial, Semiconductor photocatalysts for wateroxidation: current status and challenges, Phys. Chem. Chem. Phys. 16 (2014) 6810-6826.
DOI: 10.1039/c4cp00246f
[51] S. Wu, J. Fang, W. Xu, C. Cen. Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O3 enhanced by Pr3+ doping. J. Chem. Technol. Biotechnol. 2013; 88: 1828–1835.
DOI: 10.1002/jctb.4034
[52] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, L. Zan, Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation, J. Solid State Chem. 194 (2012) 250–256.
[53] Q. -H. Li, L. -M. Wang, D. -Q. Chu, X. -Z. Yang, Z. -Y. Zhang, Cylindrical stacks and flower-like tungsten oxide microstructures: Controllable synthesis and photocatalytic properties, Ceramics Int. 40(2014)4969–4973.
[54] D. Sanchez Martinez, A. Martinez-dela Cruz, E. Lopez Cuellar, Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent, Applied Catalysis A: General 398 (2011) 179–186.
[55] Y. Zheng, G. Chen, Y. Yu, J. Sun, Y. Zhou, J. Pei, Template and surfactant free synthesis of hierarchical WO3·0. 33H2O via a facile solvothermal route for photo-catalytic RhB degradation, Cryst. Eng. Comm. 16 (2014) 6107–6113.
DOI: 10.1039/c4ce00361f
[56] C. Feng, S. Wang, B. Geng, Ti (IV) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance, Nanoscale, 3 (2011) 3695–3699.
DOI: 10.1039/c1nr10460h
[57] H. Liu, T. Peng, D. Ke, Z. Peng, C. Yan, Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles, Mater. Chem. Phys. 104 (2007) 377–383.
[58] A. M. Cruz, D. S. Martınez, E. L. Cuellar, Synthesis and characterization of WO3 nanoparticles prepared by theprecipitation method: Evaluation of photocatalytic activity under Vis-irradiation, Solid State Sci. 12 (2010) 88–94.
[59] M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, W. Ued, Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, andtheir structural characterization and application as photocatalysts under visible light irradiation, J. Mater. Chem. 20 (2010).
DOI: 10.1039/b922416e
[60] Y. Liu, Q. Li, S. Gao, J. K. Shang, Template-free solvo-thermal synthesis of WO3/WO3·H2O hollow spheres and their enhanced photocatalytic activity from the mixture phase effect, Cryst. Eng. Comm. 16 (2014) 7493–7501.
DOI: 10.1039/c4ce00857j
[61] G. Xin, W. Guo, T. Ma, Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution, Applied Surface Sci. 256 (2009) 165–169.
[62] J. Huang, X. Xu, C. Gu, G. Fu, W. Wang, J. Liu. Flower-like and hollow sphere-like WO3 porous nanostructures: Selective synthesis and their photo catalysis property, Mater. Res. Bulletin, 47 (2012) 3224–3232.
[63] J. Huang, L. Xiao, X. Yang, WO3 nanoplates, hierarchical flower-like assemblies and their photocatalytic properties, Mater. Res. Bulletin 48 (2013) 2782–2785.
[64] G. Xi, Y. Yan, Q. Ma, J. Li, H. Yang, X. Lu, C. Wang. Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible-light photo catalysis, Chem. Eur. J. 18 (2012) 13949 – 13953.
[65] J. Yin, H. Cao, J. Zhang, M. Qu, Z. Zhou, Synthesis and applications of γ‑tungsten oxide hierarchical nanostructures. Cryst. Growth Design13 (2013) 759−769.
DOI: 10.1021/cg301469u
[66] J. Shi, G. Hu, R. Cong, H. Bu, N. Dai. Controllable synthesis of WO3. nH2O microcrystals with various morphologies by a facile inorganic route and their photocatalytic activities, New J. Chem. 37 (2013) 1538—1544.
DOI: 10.1039/c3nj41159a
[67] D. Tanaka, Y. Oaki, H. Imai, Enhanced photocatalytic activity of quantum-confined tungsten trioxide nanoparticles in mesoporous silica, Chem. Commun. 46 (2010) 5286–5288.
DOI: 10.1039/c0cc00540a
[68] I. M. Szilagyi B. Forizs, O. Rosseler, A. Szegedi, P. Nemeth, P. Kiraly, G. Tarkanyi, B. Vajna, K. Varga-Josepovits, K. Laszlo A. L. Toth, P. Baranyai, M. Leskela. WO3 photocatalysts: Influence of structure and composition. J. Catalysis 294 (2012).
[69] T. Mano, S. Nishimoto, Y. Kameshim, M. Miyake, Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation, Chem. Eng. J. 264 (2015) 221–229.
[70] H. Kim, H. -Y. Yoo, S. Hong, S. Lee, S. Lee, B. -S. Park, H. Park, C. Lee, J. Lee, Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation, Applied Catalysis B: Environ. 162 (2015) 515–523.
[71] H. Lee, J. Choi, S. Lee, S. -T. Yun, C. Lee, J. Lee, Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent, Applied Catalysis B: Environ. 138– 139 (2013) 311– 317.
[72] D. Sanchez-Martınez, A. Martınez-de la Cruz, E. Lopez-Cuellar, Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties, Mater. Res. Bulletin 48 (2013) 691–697.
[73] L. G. Devi, B. N. Murthy, S. G. Kumar, Heterogeneous photo catalytic degradation of anionic and cationic dyesover TiO2 and TiO2 doped with Mo6+ ions under solar light: Correlation of dye structure and its adsorptive tendency on the degradation rate, Chemosphere 76 (2009).
[74] L. –H. Chi, X. Tang, L. Weavers, Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution, Environ. Sci. Technol. 38 (2004) 6875-6880.
DOI: 10.1021/es049155n
[75] Y.F. Rao, W. Chu, Y. R. Wang. Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension: Role of alcohol and sulfate radicals in the degradation pathway, Applied Catalysis A: General 468 (2013) 240– 249.
[76] W. Chu, Y.F. Rao, Photocatalytic oxidation of monuron in the suspension of WO3 under the irradiation of UV–visible light, Chemosphere 86 (2012) 1079–1086.
[77] M. Qamar, M. A. Gondal, Z. H. Yamani, Removal of Rhodamine 6G induced by laser and catalyzed by Pt/WO3nanocomposite, Catalysis Commun. 11 (2010) 768–772.
[78] A. -W. Xu, Y. Gao, H. -Q. Liu, The Preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catalysis 207, (2002) 151–157.
[79] R. Abe, H. Takami,N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide, J. Am. Chem. Soc. 130 (2008) 7780–7781.
DOI: 10.1021/ja800835q
[80] G.W. Ho, K. J. Chua, D. R. Siow, Metal loaded WO3 particles for comparative studies of photocatalysis and electrolysis solar hydrogen production, Chem. Eng. J. 181– 182 (2012) 661– 666.
[81] S. Sun, W. Wang, S. Zeng, M. Shang and L. Zhang, Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation., J. Hazard. Mater. 2010, 178, 427-433.
[82] S. O. Alfaro, A. Martinez-de la Cruz, Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by co-precipitation method. Applied Catalysis A: General 383 (2010) 128–133.
[83] Z. Cui, D. Zeng, T. Tang, J. Liu, C. Xie, Processing-structure-property relationship of Bi2WO6 nanostructures as visible-light-driven photocatalyst, J . Hazard. Mater. 183 (2010) 211–217.
[84] T. Saison, P. Gras, N. Chemin, C. Chaneac, O. Durupthy,V. Brezova, C. Colbeau-Justin, J. -P. Jolivet, New Insights into Bi2WO6 Properties as a Visible-Light Photocatalyst, J. Phys. Chem. C 117 (2013) 22656−22666.
DOI: 10.1021/jp4048192
[85] D.W. Hwang, J. Kim, T. J. Park, J. S. Lee. Mg-doped WO3 as a novel photocalatyst for visible light induced water splitting. Catalysis Letters, 2012, 80, 53-57.
[86] A. Hameed, M.A. Gondal, Z .H. Yamani, Effect of transition metal doping on photocatalytic activity of WO3for water splitting under laser illumination: role of 3d-orbitals, Catalysis Commun. 5 (2004) 715–719.
[87] X. Wang, L. Pang, X. Hu, N. Han, Fabrication of ion doped WO3 photocatalysts through bulk and surface doping, J. Environ, Sci. 118, 12035 (2015)76-82.
[88] A. K. L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, One step of WO3/TiO2 nanocomposites with enhanced photocatalytic activity, Appl. Catal. B – Environ. 91 (2009) 397–405.
[89] H. Widiyandari, A. Purwanto, R. Balgis, T. Ogi, K. Okuyam, CuO/WO3 and Pt/WO3nanocatalysts for efficient pollutant degradation using visible light irradiation, Chem. Eng. J. 180 (2012) 323– 329.
[90] J. -W. Shi, J. -T. Zheng, Y. Hu, Y. -C. Zhao, Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2, Mater. Chem. Phys. 106 (2007) 247–249.
[91] J. -W. Shi, Preparation of Fe (III) and Ho (III) co-doped TiO2 films loaded on activated carbon fibers and their photo-catalytic activities, Chem. Eng. J. 151 (2009) 241–246.
[92] X. C. Song, E Yang, G. Liu, Y. Zhang, Z. S. Liu, H. F. Chen, Y. Wang, Preparation and photo catalytic activity of Mo-doped WO3 nanowires, J. Nanopart. Res. 12 (2010) 2813–2819.
[93] H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities, Applied Catalysis B: Environ. 166–167 (2015)112–120.
[94] H. Irie, S. Miura, K. Kamiy, K. Hashimoto, Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 andWO3 photocatalysts, Chem. Phys. Letters 457 (2008) 202–205.
[95] Z. Wen, W. Wu, Z. Liu, H. Zhang, J. Lian, J. Chen, Ultrahigh-efficiency photocatalysts based on mesoporous Pt–WO3 nanohybrids, Phys. Chem. Chem. Phys. 15 (2013) 6773—6778.
DOI: 10.1039/c3cp50647a
[96] X. F. Cheng, W. H. Leng, D. P. Liu, J. Q. Zhang, C. N. Cao. Enhanced photoelectrocatalytic performance of Zn-doped WO3photocatalysts for nitrite ions degradation under visible light, Chemosphere 68 (2007) 1976–(1984).
[97] B. D. Chen, J. Ye, Hierarchical WO3 Hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties, Adv. Funct. Mater. 18 (2008) 1922–(1928).
[98] Z. S. Seddigi, Removal of Alizarin Yellow dye from water using zinc doped WO3 catalyst, Bull. Environ. Contam. Toxico. l 84 (2010)564–567.
[99] M. Takeuchi, Y. Shimizu, H. Yamagaw, T. Nakamuro, M. Anpo. Preparation of the visible light responsive N3−-doped WO3 photocatalyst by a thermal decomposition of ammonium para tungstate Applied Catalysis B: Environmental 110 (2011) 1– 5.
[100] Y. Liu, Z. Li, H. Lv, H. Tang, X. Xing, Synthesis of hierarchical Bi2WO6 microspheres with high visible-light-driven photocatalytic activities by sol–gel-hydro thermal route. Mater. Letters 108(2013)84–87.
[101] A. Purwanto, H. Widiyandari, T. Ogi, K. Okuyama, Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation, Catalysis Commun. 12 (2011) 525–529.
[102] D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sund, L. Gao, Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates, Nanoscale, 4 (2012) 5431–5439.
DOI: 10.1039/c2nr31030a
[103] J. Kim, C. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that Generates OH radicals under visible light, Environ. Sci. Technol. 44 (2010) 6849–6854.
DOI: 10.1021/es101981r
[104] M. Qamar, M.A. Gondal, Z.H. Yamani, Removal of Rhodamine 6G induced by laser and catalyzed by Pt/WO3nanocomposite. Catalysis Communications 11 (2010) 768–772.
[105] Q. Xue, Y. Liu, Q. Zhou, M. Utsumi, Z. Zhang, N. Sugiur, Photocatalytic degradation of geosmin by Pd nanoparticle modified WO3catalyst under simulated solar light, Chem. Eng. J. 283 (2016) 614–621.
[106] C. Xu, X. Wei, Y. Guo, H. Wu, Z. Ren, G. Xu, Surfactant-free synthesis of Bi2WO6 multilayered disks with visible-light-induced photocatalytic activity. Mater. Res. Bull. 44(2009) 1635–1641.
[107] W. Cong, C. Lin, Preparation, spectral characteristics and photocatalytic activity of Eu3+-doped WO3 nanoparticles, J. Rare Earths, 29 (2011) 727-731.
[108] S. L. Liew, Z. Zhang, T.W. G. Goh, G.S. Subramanian, H. L. D. Seng, T.S. A. Hora, H. -K. Luo, D.Z. Chi, Int. J. hydrogen energy 39 (2014) 4291-4298.
[109] Z. Zhang, W. Wang, M. Shang, W. Yin, Low-temperature combustion synthesis of Bi2WO6 nano particles as a visible-light driven photocatalyst. J. Hazard. Mater. 177 (2010) 1013–1018.
[110] S. M. Lopez, M. C. Hidalgo, J. A. Navio, G. Colon, Novel Bi2WO6-TiO2 hetero structures for Rhodamine B degradation under sunlike irradiation, J. Hazard. Mater. 185, (2011)1425–1434.
[111] G. Xin, W. Guo, T. Ma, Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution, Applied Surface Sci. 256 (2009) 165–169.
[112] A. Fujii, Z. Meng, C. Yogi, T. Hashishin, T. Sanada, K. Kojim, Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic degradation of methylene blue, Surface Coatings Technol. 271 (2015) 251–258.
[113] M. Miyauchi, Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles, Phys. Chem. Chem. Phys. 10 (2008) 6258–6265.
DOI: 10.1039/b807426g
[114] L. G. Devi, N. Kottam, S. G. Kumar, Preparation and characterization of Mn-doped titanates with a bicrystalline framework: correlation of the crystallite size with the synergistic effect on the photocatalytic activity, J. Phys. Chem. C 113 (2009).
DOI: 10.1021/jp903711a
[115] J. Yu, L. Yue, S. Liu, B. Huang, X. Zhang, Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres, J. Colloid and Interface Sci. 334 (2009) 58–64.
[116] Y. Shiraishi, Y. Sugano, S. Ichikawa, T. Hirai, Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles, Catal. Sci. Technol. 2 (2012) 400–405.
DOI: 10.1039/c1cy00331c
[117] O. Tomita, B. Ohtani, R. Abe, Highly selective phenol production from benzene on a platinum-loaded tungsten oxide photocatalyst with water and molecular oxygen: selective oxidation of water by holes for generating hydroxyl radical as the predominant source of the hydroxyl group, Catal. Sci. Technol. 4 (2014).
DOI: 10.1039/c4cy00445k
[118] B. Ma, J. Guo, W. -L. Dai, K. Fan, Ag-AgCl/WO3 hollow sphere with flower-like structure and superior visible photocatalytic activity, Applied Catalysis B: Environ. 123– 124 (2012) 193– 199.
[119] J. Cao, B. Luo, H. Lin, S. Chen, Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation, J. Hazard. Mater. 190 (2011) 700–706.
[120] R. Adhikari, G. Gyawali, T. Sekino, S. W. Lee, Microwave assisted hydrothermal synthesis of Ag/AgCl/WO3photocatalyst and its photocatalytic activity under simulated solar light, J. Solid State Chem. 197(2013)560–565.