Nano-Sized Photocatalytic Materials for Solar Energy Conversion and Storage

Article Preview

Abstract:

World is presently facing two major problems: Energy crisis and ever increasing environmental pollution as the fossil fuels used today are polluting the environment and these resources are limited only for a few coming decades. nanosized materials are being used these days to provide alternative energy sources to fossil fuels, which is environmentally clean also. The development of newer photocatalytic nanomaterials will enable us to produce and store solar energy in the form of hydrogen. Hydrogen has been advocated as the fuel of future and it can be produced by photo-splitting of water in presence of photocatalytic materials. nanosized photocatalytic materials have also been utilized in solar cells and photocatalytic reduction of carbon dioxide (a step towards artificial photosynthesis). Although, the use of nanosized photocatalytic materials has long miles to go to compete with present day technology (Photovoltaics and use of fossil fules), but there is lot of hopes from this kind of material in years to come. This chapter deals with use of nanomaterials in conversion of solar energy into electricity, photogeneration of hydrogen, and photocatalytic reduction of carbon dioxide. Presently, majority of photovoltaic power comes from bulk semiconductors, and only a limited use has been made of nanosized semiconductors, but there is likely U-turn in coming decades so that nanosemiconductors will have an edge over bulk semiconductors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-77

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, Y. Cui, Phase transformation of biphasic Cu2S−CuInS2 to monophasic CuInS2 nanorods, Journal of American Chemical Society. 131(13) (2009) 4962–4966.

DOI: 10.1021/ja809901u

Google Scholar

[2] Z. Yan, Y. Zhao, M. Zhuang, J. Liu, A. Wei, Solvothermal synthesis of CuInS2 powders and CuInS2 thin films for solar cell application, Journal of Materials Science: Materials in Electronics. 24(12) (2013) 5055-5060.

DOI: 10.1007/s10854-013-1523-5

Google Scholar

[3] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%, Progress in Photovoltaics: Research and Applications, Special Issue: 25th EU PVSEC WCPEC-5, Valencia, Spain. 2010, 19(7) (2011).

DOI: 10.1002/pip.1078

Google Scholar

[4] Z. Chen, M. Tang, L. Song, G. Tang, B. Zhang, L. Zhang, J. Yang, J. Hu, In situ growth of CuInS2 nanocrystals on nanoporous TiO2 film for constructing inorganic/organic, heterojunction solar cells, Nanoscale Research Letters. 8 (2013) 354.

DOI: 10.1186/1556-276x-8-354

Google Scholar

[5] J. Guo, X. Wang, W. H. Zhou, Z. X. Chang, X. Wang, Z. J. Zhou, S. X. Wu, Efficiency enhancement of dye-sensitized solar cells (DSSCs) using ligand exchanged CuInS2 NCs as counter electrode materials, RSC Advances. 3 (2013) 14731-14736.

DOI: 10.1039/c3ra41602j

Google Scholar

[6] Y. Liu, Y. Xie, H. Cui, W. Zhao, C. Yang,  Y. Wang,  F. Huang, N. Dai, Preparation of monodispersed CuInS2 nanopompons and nanoflake films and application in dye-sensitized solar cells, Physical Chemistry Chemical Physics. 15 (2013) 4496-4499.

DOI: 10.1039/c3cp44485f

Google Scholar

[7] W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, O. Gunawan, 12% efficiency CuIn(Se, S)2 photovoltaic device prepared using a hydrazine solution process, Chemistry of Materials. 22(3) (2010) 1010–1014.

DOI: 10.1021/cm901950q

Google Scholar

[8] S. J. Ahn, K. Kim, A. Cho, J. Gwak, J. H. Yun, K. Shin, K. S. Ahn, K. Yoon, CuInSe2 (CIS) thin films prepared from amorphous cu–in–se nanoparticle precursors for solar cell application, ACS Applied Materials & Interfaces. 4(3) (2012) 1530–1536.

DOI: 10.1021/am201755q

Google Scholar

[9] C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, B. A. Korgel, Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals, ACS Applied Materials & Interfaces. 4(5) (2012) 2757–2761.

DOI: 10.1021/am3003846

Google Scholar

[10] C. L. Hsin, W. F. Lee, C. T. Huang, C. W. Huang, W. W. Wu, L. J. Chen, Growth of CuInSe2 and In2Se3/CuInSe2 Nano-heterostructures through, Solid State Reactions, Nano Letters. 11(10) (2011) 4348–435.

DOI: 10.1021/nl202463w

Google Scholar

[11] S. J. Ahn, C. W. Kim, J. H. Yun, J. Gwak, S. Jeong, B. H. Ryu, K. H. Yoon, CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors, The Journal of Physical Chemistry C. 114(17) (2010) 8108–8113.

DOI: 10.1021/jp1007363

Google Scholar

[12] Y. S. Lim, H. S. Kwon, J. Jeong, J. Y. Kim, H. Kim, M. J. Ko, U. Jeong, D. K. Lee, Colloidal solution-processed CuInSe2solar cells with significantly improved efficiency up to 9% by morphological improvement, ACS Applied Materials & Interfaces. 6(1) (2014).

DOI: 10.1021/am4040976

Google Scholar

[13] H. S. An, Y. Cho, S. J. Park, H. S. Jeon, Y. J. Hwang, D. W. Kim, B. K. Min, Cocktails of paste coatings for performance enhancement of CuInGaS2 thin-film solar cells, ACS Applied Materials & Interfaces. 6(2) (2014) 888–893.

DOI: 10.1021/am404164b

Google Scholar

[14] H. Yoon, S. H. Na, J. Y. Choi, M. W. Kim, H. Kim, H. S. An, B. K. Min, S. J. Ahn, J. H. Yun, J. Gwak, K. H. Yoon, S. S. Kolekar, M. F. A. M. V. Hest, S. S. Al-Deyab, M. T. Swihart, S. S. Yoon, Carbon- and oxygen-free Cu(InGa)(SSe)2 solar cell with a 4. 63% conversion efficiency by electrostatic spray deposition, ACS Applied Materials & Interfaces. 6(11) (2014).

DOI: 10.1021/am501286d

Google Scholar

[15] C. Jiang, J. S. Lee, D. V. Talapin, Soluble precursors for CuInSe2, CuIn1–xGaxSe2, and Cu2ZnSn(S, Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands, Journal of American Chemical Society. 134 (11) (2012).

DOI: 10.1021/ja2105812

Google Scholar

[16] G. Wang, S. Wang, Y. Cui, D. Pan, A novel and versatile strategy to prepare metal–organic molecular precursor solutions and its application in Cu(In, Ga)(S, Se)2 solar cells, Chemistry of Materials. 24(20) (2012) 3993–3997.

DOI: 10.1021/cm3027303

Google Scholar

[17] A. R. Uhl, M. Koller, A. S. Wallerand, C. M. Fella, L. Kranz, H. Hagendorfera, Y. E. Romanyuk, A. N. Tiwari, S. Yoon, A. Weidenkaff, T. M. Friedlmeier, E. Ahlswede, D. Van Genechten, F. Stassin, Cu(In, Ga)Se2 absorbers from stacked nanoparticle precursor layers, Thin Solid Films. 535 (2013).

DOI: 10.1016/j.tsf.2012.12.096

Google Scholar

[18] Y. H. Seo, Y. Jo, Y. Choi, K. H. Yoon, B. H. Ryu, S. J. Ahn, S. Jeong, Thermally-derived liquid phase involving multiphase Cu(In, Ga)Se2 nanoparticles for solution-processed inorganic photovoltaic devices, RSC Advances. 4 (2014)18453-18459.

DOI: 10.1039/c4ra00623b

Google Scholar

[19] Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal, Fabrication of 7. 2% efficient CZTSSesolar cells using CZTS nanocrystals, Journal of American Chemical Society. 132(49) (2010) 17384–17386.

DOI: 10.1021/ja108427b

Google Scholar

[20] Y. Kim, K. Woo, I. Kim, Y. S. Cho, S. Jeong, J. Moon, Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications, Nanoscale. 5 (2013) 10183-10188.

DOI: 10.1039/c3nr03104g

Google Scholar

[21] Y. Cao, Y. Xiao, J. Y. Jung, H. D. Um, S. W. Jee, H. Choi, J. H. Bang, J. H. Lee, Highly electrocatalytic Cu2ZnSn(S1–xSex)4 counter electrodes for quantum-dot-sensitized solar cells, ACS Applied Materials & Interfaces. 5(3) (2013) 479–484.

DOI: 10.1021/am302522c

Google Scholar

[22] C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B. A. Korgel, Synthesis of Cu2ZnSnS4nanocrystals for use in low-cost photovoltaics, Journal of American Chemical Society. 131(35) (2009) 12554–12555.

DOI: 10.1021/ja905922j

Google Scholar

[23] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi, Device characteristics of a 10. 1% hydrazine-processed Cu2ZnSn(Se, S)4 solar cell, Progress in Photovoltaics: Research and Applications. 20(1) (2012) 6–11.

DOI: 10.1002/pip.1160

Google Scholar

[24] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi, Optical designs that improve the efficiency of Cu2ZnSn(S, Se)4 solar cells, Energy & Environmental Science. 7 (2014) 1029-1036.

DOI: 10.1039/c3ee42541j

Google Scholar

[25] K. Vinokurov, J. E. Macdonald, U. Banin, Structures and mechanisms in the growth of hybrid Ru–Cu2S nanoparticles: From cages to nanonets, Chemistry of Materials. 24(10) (2012) 1822–1827.

DOI: 10.1021/cm3003589

Google Scholar

[26] H. Peng, G. Ma, J. Mu, K. Sun, Z. Lei, Controllable synthesis of CuS with hierarchical structures via a surfactant-free method for high-performance supercapacitors, Materials Letters. 122 (2014)25–28.

DOI: 10.1016/j.matlet.2014.01.173

Google Scholar

[27] A. H. Khan, U. Thupakula, A. Dalui, S. Maji, A. Debangshi, S. Acharya, Evolution of long range bandgap tunable, lead sulfide nanocrystals with photovoltaic properties, Journal of Physical Chemistry C. 117(15) (2013) 7934–7939.

DOI: 10.1021/jp402030p

Google Scholar

[28] J. Pan, A. O. El-Ballouli, L. Rollny, O. Voznyy, V. M. Burlakov, A. Goriely, E. H. Sargent, O. M. Bakr, Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages, ACS Nano. 7(11) (2013).

DOI: 10.1021/nn404397d

Google Scholar

[29] T. Kawawaki, T. Tatsuma, Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles, Show affiliations, Physical Chemistry Chemical Physics. 15 (2013) 20247-20251.

DOI: 10.1039/c3cp53625d

Google Scholar

[30] C. H. Hsu, C. H. Chen, D. H. Chen, Decoration of PbS nanoparticles on Al-doped ZnOnanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting, Journal of Alloys and Compounds. 554 (2013) 45–50.

DOI: 10.1016/j.jallcom.2012.11.192

Google Scholar

[31] N. Reilly, M. Wehrung, R. A. O'Dell, L. Sun, Ultrasmall colloidal PbS quantum dots, Materials Chemistry and Physics. 147(1–2) (2014) 1–4.

DOI: 10.1016/j.matchemphys.2014.04.026

Google Scholar

[32] M. Z. Iqbal, F. Wang, M. Y. Rafique, S. Ali, M. H. Farooq, M. Ellahi, Hydrothermal synthesis, characterization and hydrogen storage of SnSnanorods, Materials Letters. 106 (2013) 33–36.

DOI: 10.1016/j.matlet.2013.04.051

Google Scholar

[33] G. M. Ford, Q. Guo, R. Agrawal, H. W. Hillhouse, Earth abundant element Cu2Zn(Sn1−xGex)S4 nanocrystals for tunable band gap solar cells: 6. 8% efficient device fabrication, Chemistry of Materials. 23(10) (2011) 2626–2629.

DOI: 10.1021/cm2002836

Google Scholar

[34] N. S. Arul, D. Y. Yun, D. U. Lee, T. W. Kim, Strong quantum confinement effects in kesterite Cu2ZnSnS4nanospheres for organic optoelectronic cells, Nanoscale. 5 (2013) 11940-11943.

DOI: 10.1039/c3nr03892k

Google Scholar

[35] Y. F. Du, J. Q. Fan, W. H. Zhou, Z. J. Zhou, J. Jiao, S. X. Wu, One-step synthesis of stoichiometric Cu2ZnSnSe4 as counter electrode for dye-sensitized solar cells, ACS Applied Materials & Interfaces. 4(3) (2012) 1796–1802.

DOI: 10.1021/am3000616

Google Scholar

[36] S. M. Camara, L. Wang, X. Zhang, Easy hydrothermal preparation of Cu2ZnSnS4(CZTS) nanoparticles for solar cell application, Nanotechnology. 24 (2013) 495401.

DOI: 10.1088/0957-4484/24/49/495401

Google Scholar

[37] L. Li, X. Liu, J. Huang, Cao, M., Chen, S., Shen, Y., Wang, L., Solution-based synthesis and characterization of Cu2FeSnS4 nanocrystals, Materials Chemistry and Physics. 133(2–3) (2012) 688–691.

DOI: 10.1016/j.matchemphys.2012.01.057

Google Scholar

[38] Y. Cui, R. Deng, G. Wang, D. Pan, A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals, Journal of Materials Chemistry. 22 (2012) 23136-23140.

DOI: 10.1039/c2jm33574c

Google Scholar

[39] C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals, Chemical Communications. 48 (2012) 2603-2605.

DOI: 10.1039/c2cc16972j

Google Scholar

[40] J. Y. Park, J. H. Noh, Mandal, T. N. S. H. Im,Y. Jun,S. I. Seok, Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts, RSC Advances. 3 (2013)24918-24921.

DOI: 10.1039/c3ra43331e

Google Scholar

[41] X. Liang, P. Guo, G. Wang, R. Deng, D. Pan, X. Wei, Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure, RSC Advances. 2 (2012) 5044-5046.

DOI: 10.1039/c2ra20198d

Google Scholar

[42] M. Cao, L. Li, W. Z. Fan, X. Y. Liu, Y. Sun, Y. Shen, Quaternary Cu2CdSnS4 nanoparticles synthesized by a simple solvothermal method, Chemical Physics Letters. 534 (2012) 34–37.

DOI: 10.1016/j.cplett.2012.03.016

Google Scholar

[43] T. S. Yoder, J. E. Cloud, G. J. Leong, D. F. Molk, M. Tussing,  J. Miorelli, C. Ngo, S. Kodambaka, M. E. Eberhart, R. M., Richards, Y. Yang, Iron pyrite nanocrystal inks: Solvothermalsynthesis, digestive ripening, and reaction mechanism, Chemistry of Materials. 26(23) (2014).

DOI: 10.1021/cm5030553

Google Scholar

[44] C. Steinhagen, T. B. Harvey, C. J. Stolle, J. Harris, B. A. Korgel, Pyrite nanocrystal solar cells: Promising, or fool's Gold?, Journal of Physical Chemistry Letters, 3(17) (2012) 2352–2356.

DOI: 10.1021/jz301023c

Google Scholar

[45] K. J. Kim, R. P. Oleksak, C. Pan, M. W.  Knapp, P. B.  Kreider, G. S. Herman, C. H. Chang, Continuous synthesis of colloidal chalcopyrite copper indium diselenide nanocrystal inks, RSC Advances. 4 (2014) 16418-16424.

DOI: 10.1039/c4ra01582g

Google Scholar

[46] A. Cho, H. Song, J. Gwak, Y. J. Eo, J. H. Yun,  K. Yoon, S. J. Ahn, Achelating effect in hybrid inks for non-vacuum-processed CuInSe2 thin films, Journal of Material Chemistry A. 2 (2014) 5087-5094.

DOI: 10.1039/c3ta15202b

Google Scholar

[47] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara,B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal Inks, for printable photovoltaics, Journal of American Chemical Society. 130(49) (2008).

DOI: 10.1021/ja805845q

Google Scholar

[48] F. Roux, S. Amtablian, M. Anton, G. Besnard, L. Bilhaut, P. Bommersbach, J. Braillon, C. Cayron, A. Disdier, H. Fournier, J. Garnier, A. Jannaud, J. Jouhannaud, A. Kaminski, N. Karst, S. Noël, S. Perraud, O. Poncelet, O. Raccurt, D. Rapisarda, A. Ricaud, D. Rouchon, M. Roumanie, E. Rouviere, O. Sicardy, F. Sonier, K. Tarasov, F. Tardi, M. Tomassin, J. Villanov, Chalcopyrite thin-film solar cells by industry-compatible ink-based process, Solar Energy Materials and Solar Cells. 115 (2013).

DOI: 10.1016/j.solmat.2013.03.029

Google Scholar

[49] Q. Guo, H. W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, Journal of American Chemical Society. 131(33) (2009) 11672–11673.

DOI: 10.1021/ja904981r

Google Scholar

[50] S. S. Mao, S. Shena, L. Guo, Nanomaterials for renewable hydrogen production, storage and utilization, Progress in Natural Science: Mater. Int. 22(6) (2012) 522-534.

DOI: 10.1016/j.pnsc.2012.12.003

Google Scholar

[51] S. S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications, Renewable Energy. 43 (2012) 149-156.

DOI: 10.1016/j.renene.2011.12.014

Google Scholar

[52] C. H. Liao, C. W. Huang, J. C. S. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalysts. 2 (2012) 490-516.

DOI: 10.3390/catal2040490

Google Scholar

[53] A. Steinfeld, Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions, International Journal of Hydrogen Energy. 27(6) (2002) 611-619.

DOI: 10.1016/s0360-3199(01)00177-x

Google Scholar

[54] I. Akkerman, M. Janssen, J. Rocha, R. H. Wijffels, Photobiological hydrogen production: Photochemical efficiency and bioreactor design, International Journal of Hydrogen Energy. 27 (2002) 1195-1208.

DOI: 10.1016/s0360-3199(02)00071-x

Google Scholar

[55] D. Dasa and T. N. Veziroglub, Advances in biological hydrogen production processes, International Journal of Hydrogen Energy. 33(21) (2008) 6046-6057.

DOI: 10.1016/j.ijhydene.2008.07.098

Google Scholar

[56] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews. 11(3) (2007) 401–425.

DOI: 10.1016/j.rser.2005.01.009

Google Scholar

[57] A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, V. K. Bukhtiyarov, A. E. Raevskaya, V. I. Litvin, S. Y. Kuchmiy, V. G. Ilyin, P. A. Manorik, Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry. 198 (2008).

DOI: 10.1016/j.jphotochem.2008.02.026

Google Scholar

[58] A. K. R. Police, S. Basavaraju, D. K. Valluri, V. S. Muthukonda, S. Machiraju, J. S. Lee, CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation, Chemical Engineering Journal. 247 (2014).

DOI: 10.1016/j.cej.2014.02.076

Google Scholar

[59] Z. Jiang, D. Jiang, Z. Yan, D. Liu, K. Qian, J. Xie, A new visible light active multifunctional ternary composite based on TiO2–In2O3 nanocrystalsheterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution, Applied Catalysis B: Environmental. 170-171 (2015).

DOI: 10.1016/j.apcatb.2015.01.041

Google Scholar

[60] P. V. Kamat, B. Meekins, P. McGinn, Designing TiO2-SrTiO3 composites for photocatalytic water splitting processes, ACS National Meeting Book of Abstracts, 241st ACS National Meeting and Exposition; Anaheim, CA; United States (2011) 1 p.

Google Scholar

[61] M. Hakamizadeh, S. Afshar, A. Tadjarodi, R. Khajavian, M.R. Fadaie, B. Bozorgi, Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite, International Journal of Hydrogen Energy. 39(14) (2014) 7262-7269.

DOI: 10.1016/j.ijhydene.2014.03.048

Google Scholar

[62] A. M. Huerta-Flores, L. M. Torres-Martínez, D. Sánchez-Martínez, M. E. Zarazúa-Morín, SrZrO3 powders: Alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting, Fuel. 158 (2015) 66–71.

DOI: 10.1016/j.fuel.2015.05.014

Google Scholar

[63] S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, V. R. Satsangi, Photoactivity of MWCNTs modified α-Fe2O3photoelectrode towards efficient solar water splitting, Renewable Energy. 83 (2015) 447-454.

DOI: 10.1016/j.renene.2015.04.053

Google Scholar

[64] X. F. Shi, X. Y. Xia, G. W. Cui, N. Deng, Y. Q. Zhao, L. H. Zhuo, B. Tang, Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity, Applied Catalysis B: Environmental. 163 (2015).

DOI: 10.1016/j.apcatb.2014.07.054

Google Scholar

[65] J. Su, L. Guo, N. Bao C. A. Grimes, Nanostructured WO3/BiVO4heterojunction films for efficient photoelectrochemical water splitting, Nano Letters. 11(5) (2011) 1928-(1933).

DOI: 10.1021/nl2000743

Google Scholar

[66] A. Gasparotto, D. Barreca, D. Bekermann, A. Devi, R. A. Fischer, P. Fornasiero, V. Gombac, O. I. Lebedev, C. MacCato, T. Montini, G. Van Tendeloo, E. Tondello, F-doped Co3O4photocatalysts for sustainable H2 generation from water/ethanol, Journal of the American Chemical Society. 133(48) (2011).

DOI: 10.1021/ja210078d

Google Scholar

[67] B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, W. Shi, Hydrothermal synthesis g-C3N4/Nano-InVO4nanocomposite and enhanced photocatalytic activity for hydrogen production under visible light radiation, ACS Applied Materials and Interfaces. 7(33) (2015).

DOI: 10.1021/acsami.5b05715

Google Scholar

[68] G. Yang, W. Yan, Q. Zhang, S. Shen, S. Ding, One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: Tunable morphology and efficient photocatalytic hydrogen production. Nanoscale. 5(24) (2013) 12432-12439.

DOI: 10.1039/c3nr03462c

Google Scholar

[69] J. Yuan, J. Wen, Y. Zhong, X. Li, Y. Fang, S. Zhang, W. Liu, Enhanced photocatalytic H2 evolution over noble-metal-free NiScocatalyst modified CdSnanorods/g-C3N4heterojunctions, Journal of Materials Chemistry A. 3(35) (2015) 18244-18255.

DOI: 10.1039/c5ta04573h

Google Scholar

[70] Q. Liang, G. Jiang, Z. Zhao, Z. Li, M. J. Maclachlan, CdS-decorated triptycene-based polymer: Durable photocatalysts for hydrogenproduction under visible-light irradiation, Catalysis Science and Technology. 5(6) (2015) 3368-3374.

DOI: 10.1039/c5cy00470e

Google Scholar

[71] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSenanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting, Angewandte Chemie International Edition. 54(32) (2015) 9351-9355.

DOI: 10.1002/anie.201503407

Google Scholar

[72] Y. Dong, Y. Chen, P. Jiang, G. Wang, X. Wu, R. Wu, C. Zhang, Efficient and stable MoS2/CdSe/NiOphotocathode for photoelectrochemical hydrogen generation from water, Chemistry-An Asian Journal. 10(8) (2015) 1660-1667.

DOI: 10.1002/asia.201500374

Google Scholar

[73] P. Tongying, F. Vietmeyer, D. Aleksiuk, G. J. Ferraudi, G. Krylova, M. Kuno, Double heterojunction nanowire photocatalysts for hydrogen generation, Nanoscale. 6(8) (2014) 4117-4124.

DOI: 10.1039/c4nr00298a

Google Scholar

[74] J. J. Wang, Z. J. Li, X. B. Li, X. B. Fan, Q. Y. Meng, S. Yu, C. B. Li, J. X. Li, C. H. Tung, L. Z. Wu, Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation, ChemSusChem. 7(5) (2014).

DOI: 10.1002/cssc.201400028

Google Scholar

[75] P. Wang, P. Chen, A. Kostka, R. Marschall, M. Wark, Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production, Chemistry of Materials. 25(23) (2013) 4739-4745.

DOI: 10.1021/cm402708h

Google Scholar

[76] Y. Zhang, L. Kang, J. Shang, H. Gao, A low cost synthesis of fly ash-based mesoporousnanocomposites for production of hydrogen by photocatalytic water-splitting, Journal of Materials Science. 48(16) (2013) 5571-5578.

DOI: 10.1007/s10853-013-7351-4

Google Scholar

[77] T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale, F. A. Armstrong, Efficient and clean photo-reduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light, Journal of American Chemical Society. 132(7) (2010).

DOI: 10.1021/ja910091z

Google Scholar

[78] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angewandte Chemie. International Edition. 52(29) (2013) 7372-7408.

DOI: 10.1002/anie.201207199

Google Scholar

[79] D.C. B. Alves, R. Silva, D. Voiry, T. Asefa, M. Chhowalla, Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction, Materials for Renewable and Sustainable Energy. 4(2) (2015). DOI: 10. 1007/s40243-015-0042-0.

DOI: 10.1007/s40243-015-0042-0

Google Scholar

[80] Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye, Photocatalytic Reduction of Carbon Dioxide by Hydrous Hydrazine over Au–Cu Alloy Nanoparticles Supported on SrTiO3/TiO2 Coaxial Nanotube Arrays, Angewandte Chemie International Edition. 54(3) (2015).

DOI: 10.1002/anie.201409183

Google Scholar

[81] P. Praus, R. Dvorsky, O. Kozak, K. KociVsb, Zinc sulphide nanoparticles for photochemical reactions: reduction of carbon dioxide and oxidation of phenol, Nanocon, Brno, Czech Republic. EU (2011).

Google Scholar

[82] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev. 114(19) (2014) 9987-10043.

DOI: 10.1021/cr500008u

Google Scholar

[83] P. Akhter, M. Hussain, G. Saracco, N. Russo, Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas, Fuel. 149 (2015) 55-65.

DOI: 10.1016/j.fuel.2014.09.079

Google Scholar

[84] D. Chen, X. Zhang, A. F. Lee, Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals, Journal of Materials Chemistry A. 3(28) (2015) 14487-14516.

DOI: 10.1039/c5ta01592h

Google Scholar

[85] A. Cybula, M. Klein, A. Zielińska-Jurek, M. Janczarek, A. Zaleska, Carbon dioxide photoconversion. The effect of titanium dioxide immobilization conditions and photocatalyst type, Physicochemical Problems of Mineral Processing. 48(1) (2012).

Google Scholar

[86] N. M. Dimitrijevic, Investigation of the charge-transfer in photo-excited nanoparticles for CO2 reduction in non-aqueous media, Journal of the Serbian Chemical Society. 78 (11) (2013) 1797–1807.

DOI: 10.2298/jsc130726093d

Google Scholar

[87] Y. Park, D. Shin, Y. N. Jang, A. H. A. Park, CO2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, Journal of Chemical & Engineering Data.  57(1) (2012).

DOI: 10.1021/je200623b

Google Scholar

[88] X. Limei, Z. Fenghua, C. Bin, B. Xuefeng, Preparation of Light-Driven Spinel Nanoparticles CoAl2O4, MgFe2O4 and CoFe2O4 and Their Photocatalytic Reduction of Carbon Dioxide, International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). (2011).

DOI: 10.1109/cdciem.2011.324

Google Scholar

[89] L. L. Tan, W. J. Ong, S. P. Chai, A. R. Mohamed, Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide, Nanoscale Research Letters. 8 (2013) 465.

DOI: 10.1186/1556-276x-8-465

Google Scholar

[90] O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels, Nano Letters. 9(2) (2009) 731-737.

DOI: 10.1021/nl803258p

Google Scholar

[91] W. N. Wang, Y. Jiang, J. D. Fortner, P. Biswas, Nanostructured Graphene-Titanium Dioxide Composites Synthesized by a Single-Step Aerosol Process for Photoreduction of Carbon Dioxide, Environmental Engineering Science. 31(7) (2014) 428-434.

DOI: 10.1089/ees.2013.0473

Google Scholar

[92] L. Roldan, Y. Mareo, E. Garcia-Bordeje, Function of the support and metal loading on catalytic CO2 reduction using Ru nanoparticles supported on carbon nanofibers, ChemCatChem. 7(8) (2015) 1347-1356.

DOI: 10.1002/cctc.201500016

Google Scholar

[93] N. Murakami, D. Saruwatari, T. Tsubota, T. Ohno, photocatalytic reduction of carbon dioxide over shape-controlled titanium(IV) oxide nanoparticles with co-catalyst loading, Current Organic Chemistry. 17(21) (2013) 2449-2453.

DOI: 10.2174/13852728113179990058

Google Scholar

[94] H. Wang, J. Hodgson, T. B. Shrestha, P. S. Thapa, D. Moore, X. Wu, M. Ikenberry, D. L. Troyer, D. Wang, K. L. Hohn, S. H. Bossmann, Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst, Beilstein Journal of Nanotechnology. 5 (2014).

DOI: 10.3762/bjnano.5.88

Google Scholar