p.1
p.20
p.33
p.45
p.58
p.78
p.94
p.105
p.127
Nano-Sized Photocatalytic Materials for Solar Energy Conversion and Storage
Abstract:
World is presently facing two major problems: Energy crisis and ever increasing environmental pollution as the fossil fuels used today are polluting the environment and these resources are limited only for a few coming decades. nanosized materials are being used these days to provide alternative energy sources to fossil fuels, which is environmentally clean also. The development of newer photocatalytic nanomaterials will enable us to produce and store solar energy in the form of hydrogen. Hydrogen has been advocated as the fuel of future and it can be produced by photo-splitting of water in presence of photocatalytic materials. nanosized photocatalytic materials have also been utilized in solar cells and photocatalytic reduction of carbon dioxide (a step towards artificial photosynthesis). Although, the use of nanosized photocatalytic materials has long miles to go to compete with present day technology (Photovoltaics and use of fossil fules), but there is lot of hopes from this kind of material in years to come. This chapter deals with use of nanomaterials in conversion of solar energy into electricity, photogeneration of hydrogen, and photocatalytic reduction of carbon dioxide. Presently, majority of photovoltaic power comes from bulk semiconductors, and only a limited use has been made of nanosized semiconductors, but there is likely U-turn in coming decades so that nanosemiconductors will have an edge over bulk semiconductors.
Info:
Periodical:
Pages:
58-77
Citation:
Online since:
May 2016
Authors:
Keywords:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, Y. Cui, Phase transformation of biphasic Cu2S−CuInS2 to monophasic CuInS2 nanorods, Journal of American Chemical Society. 131(13) (2009) 4962–4966.
DOI: 10.1021/ja809901u
[2] Z. Yan, Y. Zhao, M. Zhuang, J. Liu, A. Wei, Solvothermal synthesis of CuInS2 powders and CuInS2 thin films for solar cell application, Journal of Materials Science: Materials in Electronics. 24(12) (2013) 5055-5060.
[3] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%, Progress in Photovoltaics: Research and Applications, Special Issue: 25th EU PVSEC WCPEC-5, Valencia, Spain. 2010, 19(7) (2011).
DOI: 10.1002/pip.1078
[4] Z. Chen, M. Tang, L. Song, G. Tang, B. Zhang, L. Zhang, J. Yang, J. Hu, In situ growth of CuInS2 nanocrystals on nanoporous TiO2 film for constructing inorganic/organic, heterojunction solar cells, Nanoscale Research Letters. 8 (2013) 354.
[5] J. Guo, X. Wang, W. H. Zhou, Z. X. Chang, X. Wang, Z. J. Zhou, S. X. Wu, Efficiency enhancement of dye-sensitized solar cells (DSSCs) using ligand exchanged CuInS2 NCs as counter electrode materials, RSC Advances. 3 (2013) 14731-14736.
DOI: 10.1039/c3ra41602j
[6] Y. Liu, Y. Xie, H. Cui, W. Zhao, C. Yang, Y. Wang, F. Huang, N. Dai, Preparation of monodispersed CuInS2 nanopompons and nanoflake films and application in dye-sensitized solar cells, Physical Chemistry Chemical Physics. 15 (2013) 4496-4499.
DOI: 10.1039/c3cp44485f
[7] W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, O. Gunawan, 12% efficiency CuIn(Se, S)2 photovoltaic device prepared using a hydrazine solution process, Chemistry of Materials. 22(3) (2010) 1010–1014.
DOI: 10.1021/cm901950q
[8] S. J. Ahn, K. Kim, A. Cho, J. Gwak, J. H. Yun, K. Shin, K. S. Ahn, K. Yoon, CuInSe2 (CIS) thin films prepared from amorphous cu–in–se nanoparticle precursors for solar cell application, ACS Applied Materials & Interfaces. 4(3) (2012) 1530–1536.
DOI: 10.1021/am201755q
[9] C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, B. A. Korgel, Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals, ACS Applied Materials & Interfaces. 4(5) (2012) 2757–2761.
DOI: 10.1021/am3003846
[10] C. L. Hsin, W. F. Lee, C. T. Huang, C. W. Huang, W. W. Wu, L. J. Chen, Growth of CuInSe2 and In2Se3/CuInSe2 Nano-heterostructures through, Solid State Reactions, Nano Letters. 11(10) (2011) 4348–435.
DOI: 10.1021/nl202463w
[11] S. J. Ahn, C. W. Kim, J. H. Yun, J. Gwak, S. Jeong, B. H. Ryu, K. H. Yoon, CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors, The Journal of Physical Chemistry C. 114(17) (2010) 8108–8113.
DOI: 10.1021/jp1007363
[12] Y. S. Lim, H. S. Kwon, J. Jeong, J. Y. Kim, H. Kim, M. J. Ko, U. Jeong, D. K. Lee, Colloidal solution-processed CuInSe2solar cells with significantly improved efficiency up to 9% by morphological improvement, ACS Applied Materials & Interfaces. 6(1) (2014).
DOI: 10.1021/am4040976
[13] H. S. An, Y. Cho, S. J. Park, H. S. Jeon, Y. J. Hwang, D. W. Kim, B. K. Min, Cocktails of paste coatings for performance enhancement of CuInGaS2 thin-film solar cells, ACS Applied Materials & Interfaces. 6(2) (2014) 888–893.
DOI: 10.1021/am404164b
[14] H. Yoon, S. H. Na, J. Y. Choi, M. W. Kim, H. Kim, H. S. An, B. K. Min, S. J. Ahn, J. H. Yun, J. Gwak, K. H. Yoon, S. S. Kolekar, M. F. A. M. V. Hest, S. S. Al-Deyab, M. T. Swihart, S. S. Yoon, Carbon- and oxygen-free Cu(InGa)(SSe)2 solar cell with a 4. 63% conversion efficiency by electrostatic spray deposition, ACS Applied Materials & Interfaces. 6(11) (2014).
DOI: 10.1021/am501286d
[15] C. Jiang, J. S. Lee, D. V. Talapin, Soluble precursors for CuInSe2, CuIn1–xGaxSe2, and Cu2ZnSn(S, Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands, Journal of American Chemical Society. 134 (11) (2012).
DOI: 10.1021/ja2105812
[16] G. Wang, S. Wang, Y. Cui, D. Pan, A novel and versatile strategy to prepare metal–organic molecular precursor solutions and its application in Cu(In, Ga)(S, Se)2 solar cells, Chemistry of Materials. 24(20) (2012) 3993–3997.
DOI: 10.1021/cm3027303
[17] A. R. Uhl, M. Koller, A. S. Wallerand, C. M. Fella, L. Kranz, H. Hagendorfera, Y. E. Romanyuk, A. N. Tiwari, S. Yoon, A. Weidenkaff, T. M. Friedlmeier, E. Ahlswede, D. Van Genechten, F. Stassin, Cu(In, Ga)Se2 absorbers from stacked nanoparticle precursor layers, Thin Solid Films. 535 (2013).
[18] Y. H. Seo, Y. Jo, Y. Choi, K. H. Yoon, B. H. Ryu, S. J. Ahn, S. Jeong, Thermally-derived liquid phase involving multiphase Cu(In, Ga)Se2 nanoparticles for solution-processed inorganic photovoltaic devices, RSC Advances. 4 (2014)18453-18459.
DOI: 10.1039/c4ra00623b
[19] Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal, Fabrication of 7. 2% efficient CZTSSesolar cells using CZTS nanocrystals, Journal of American Chemical Society. 132(49) (2010) 17384–17386.
DOI: 10.1021/ja108427b
[20] Y. Kim, K. Woo, I. Kim, Y. S. Cho, S. Jeong, J. Moon, Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications, Nanoscale. 5 (2013) 10183-10188.
DOI: 10.1039/c3nr03104g
[21] Y. Cao, Y. Xiao, J. Y. Jung, H. D. Um, S. W. Jee, H. Choi, J. H. Bang, J. H. Lee, Highly electrocatalytic Cu2ZnSn(S1–xSex)4 counter electrodes for quantum-dot-sensitized solar cells, ACS Applied Materials & Interfaces. 5(3) (2013) 479–484.
DOI: 10.1021/am302522c
[22] C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B. A. Korgel, Synthesis of Cu2ZnSnS4nanocrystals for use in low-cost photovoltaics, Journal of American Chemical Society. 131(35) (2009) 12554–12555.
DOI: 10.1021/ja905922j
[23] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi, Device characteristics of a 10. 1% hydrazine-processed Cu2ZnSn(Se, S)4 solar cell, Progress in Photovoltaics: Research and Applications. 20(1) (2012) 6–11.
DOI: 10.1002/pip.1160
[24] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi, Optical designs that improve the efficiency of Cu2ZnSn(S, Se)4 solar cells, Energy & Environmental Science. 7 (2014) 1029-1036.
DOI: 10.1039/c3ee42541j
[25] K. Vinokurov, J. E. Macdonald, U. Banin, Structures and mechanisms in the growth of hybrid Ru–Cu2S nanoparticles: From cages to nanonets, Chemistry of Materials. 24(10) (2012) 1822–1827.
DOI: 10.1021/cm3003589
[26] H. Peng, G. Ma, J. Mu, K. Sun, Z. Lei, Controllable synthesis of CuS with hierarchical structures via a surfactant-free method for high-performance supercapacitors, Materials Letters. 122 (2014)25–28.
[27] A. H. Khan, U. Thupakula, A. Dalui, S. Maji, A. Debangshi, S. Acharya, Evolution of long range bandgap tunable, lead sulfide nanocrystals with photovoltaic properties, Journal of Physical Chemistry C. 117(15) (2013) 7934–7939.
DOI: 10.1021/jp402030p
[28] J. Pan, A. O. El-Ballouli, L. Rollny, O. Voznyy, V. M. Burlakov, A. Goriely, E. H. Sargent, O. M. Bakr, Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages, ACS Nano. 7(11) (2013).
DOI: 10.1021/nn404397d
[29] T. Kawawaki, T. Tatsuma, Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles, Show affiliations, Physical Chemistry Chemical Physics. 15 (2013) 20247-20251.
DOI: 10.1039/c3cp53625d
[30] C. H. Hsu, C. H. Chen, D. H. Chen, Decoration of PbS nanoparticles on Al-doped ZnOnanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting, Journal of Alloys and Compounds. 554 (2013) 45–50.
[31] N. Reilly, M. Wehrung, R. A. O'Dell, L. Sun, Ultrasmall colloidal PbS quantum dots, Materials Chemistry and Physics. 147(1–2) (2014) 1–4.
[32] M. Z. Iqbal, F. Wang, M. Y. Rafique, S. Ali, M. H. Farooq, M. Ellahi, Hydrothermal synthesis, characterization and hydrogen storage of SnSnanorods, Materials Letters. 106 (2013) 33–36.
[33] G. M. Ford, Q. Guo, R. Agrawal, H. W. Hillhouse, Earth abundant element Cu2Zn(Sn1−xGex)S4 nanocrystals for tunable band gap solar cells: 6. 8% efficient device fabrication, Chemistry of Materials. 23(10) (2011) 2626–2629.
DOI: 10.1021/cm2002836
[34] N. S. Arul, D. Y. Yun, D. U. Lee, T. W. Kim, Strong quantum confinement effects in kesterite Cu2ZnSnS4nanospheres for organic optoelectronic cells, Nanoscale. 5 (2013) 11940-11943.
DOI: 10.1039/c3nr03892k
[35] Y. F. Du, J. Q. Fan, W. H. Zhou, Z. J. Zhou, J. Jiao, S. X. Wu, One-step synthesis of stoichiometric Cu2ZnSnSe4 as counter electrode for dye-sensitized solar cells, ACS Applied Materials & Interfaces. 4(3) (2012) 1796–1802.
DOI: 10.1021/am3000616
[36] S. M. Camara, L. Wang, X. Zhang, Easy hydrothermal preparation of Cu2ZnSnS4(CZTS) nanoparticles for solar cell application, Nanotechnology. 24 (2013) 495401.
[37] L. Li, X. Liu, J. Huang, Cao, M., Chen, S., Shen, Y., Wang, L., Solution-based synthesis and characterization of Cu2FeSnS4 nanocrystals, Materials Chemistry and Physics. 133(2–3) (2012) 688–691.
[38] Y. Cui, R. Deng, G. Wang, D. Pan, A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals, Journal of Materials Chemistry. 22 (2012) 23136-23140.
DOI: 10.1039/c2jm33574c
[39] C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals, Chemical Communications. 48 (2012) 2603-2605.
DOI: 10.1039/c2cc16972j
[40] J. Y. Park, J. H. Noh, Mandal, T. N. S. H. Im,Y. Jun,S. I. Seok, Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts, RSC Advances. 3 (2013)24918-24921.
DOI: 10.1039/c3ra43331e
[41] X. Liang, P. Guo, G. Wang, R. Deng, D. Pan, X. Wei, Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure, RSC Advances. 2 (2012) 5044-5046.
DOI: 10.1039/c2ra20198d
[42] M. Cao, L. Li, W. Z. Fan, X. Y. Liu, Y. Sun, Y. Shen, Quaternary Cu2CdSnS4 nanoparticles synthesized by a simple solvothermal method, Chemical Physics Letters. 534 (2012) 34–37.
[43] T. S. Yoder, J. E. Cloud, G. J. Leong, D. F. Molk, M. Tussing, J. Miorelli, C. Ngo, S. Kodambaka, M. E. Eberhart, R. M., Richards, Y. Yang, Iron pyrite nanocrystal inks: Solvothermalsynthesis, digestive ripening, and reaction mechanism, Chemistry of Materials. 26(23) (2014).
DOI: 10.1021/cm5030553
[44] C. Steinhagen, T. B. Harvey, C. J. Stolle, J. Harris, B. A. Korgel, Pyrite nanocrystal solar cells: Promising, or fool's Gold?, Journal of Physical Chemistry Letters, 3(17) (2012) 2352–2356.
DOI: 10.1021/jz301023c
[45] K. J. Kim, R. P. Oleksak, C. Pan, M. W. Knapp, P. B. Kreider, G. S. Herman, C. H. Chang, Continuous synthesis of colloidal chalcopyrite copper indium diselenide nanocrystal inks, RSC Advances. 4 (2014) 16418-16424.
DOI: 10.1039/c4ra01582g
[46] A. Cho, H. Song, J. Gwak, Y. J. Eo, J. H. Yun, K. Yoon, S. J. Ahn, Achelating effect in hybrid inks for non-vacuum-processed CuInSe2 thin films, Journal of Material Chemistry A. 2 (2014) 5087-5094.
DOI: 10.1039/c3ta15202b
[47] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara,B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal Inks, for printable photovoltaics, Journal of American Chemical Society. 130(49) (2008).
DOI: 10.1021/ja805845q
[48] F. Roux, S. Amtablian, M. Anton, G. Besnard, L. Bilhaut, P. Bommersbach, J. Braillon, C. Cayron, A. Disdier, H. Fournier, J. Garnier, A. Jannaud, J. Jouhannaud, A. Kaminski, N. Karst, S. Noël, S. Perraud, O. Poncelet, O. Raccurt, D. Rapisarda, A. Ricaud, D. Rouchon, M. Roumanie, E. Rouviere, O. Sicardy, F. Sonier, K. Tarasov, F. Tardi, M. Tomassin, J. Villanov, Chalcopyrite thin-film solar cells by industry-compatible ink-based process, Solar Energy Materials and Solar Cells. 115 (2013).
[49] Q. Guo, H. W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, Journal of American Chemical Society. 131(33) (2009) 11672–11673.
DOI: 10.1021/ja904981r
[50] S. S. Mao, S. Shena, L. Guo, Nanomaterials for renewable hydrogen production, storage and utilization, Progress in Natural Science: Mater. Int. 22(6) (2012) 522-534.
[51] S. S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications, Renewable Energy. 43 (2012) 149-156.
[52] C. H. Liao, C. W. Huang, J. C. S. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalysts. 2 (2012) 490-516.
DOI: 10.3390/catal2040490
[53] A. Steinfeld, Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions, International Journal of Hydrogen Energy. 27(6) (2002) 611-619.
[54] I. Akkerman, M. Janssen, J. Rocha, R. H. Wijffels, Photobiological hydrogen production: Photochemical efficiency and bioreactor design, International Journal of Hydrogen Energy. 27 (2002) 1195-1208.
[55] D. Dasa and T. N. Veziroglub, Advances in biological hydrogen production processes, International Journal of Hydrogen Energy. 33(21) (2008) 6046-6057.
[56] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews. 11(3) (2007) 401–425.
[57] A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, V. K. Bukhtiyarov, A. E. Raevskaya, V. I. Litvin, S. Y. Kuchmiy, V. G. Ilyin, P. A. Manorik, Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry. 198 (2008).
[58] A. K. R. Police, S. Basavaraju, D. K. Valluri, V. S. Muthukonda, S. Machiraju, J. S. Lee, CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation, Chemical Engineering Journal. 247 (2014).
[59] Z. Jiang, D. Jiang, Z. Yan, D. Liu, K. Qian, J. Xie, A new visible light active multifunctional ternary composite based on TiO2–In2O3 nanocrystalsheterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution, Applied Catalysis B: Environmental. 170-171 (2015).
[60] P. V. Kamat, B. Meekins, P. McGinn, Designing TiO2-SrTiO3 composites for photocatalytic water splitting processes, ACS National Meeting Book of Abstracts, 241st ACS National Meeting and Exposition; Anaheim, CA; United States (2011) 1 p.
[61] M. Hakamizadeh, S. Afshar, A. Tadjarodi, R. Khajavian, M.R. Fadaie, B. Bozorgi, Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite, International Journal of Hydrogen Energy. 39(14) (2014) 7262-7269.
[62] A. M. Huerta-Flores, L. M. Torres-Martínez, D. Sánchez-Martínez, M. E. Zarazúa-Morín, SrZrO3 powders: Alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting, Fuel. 158 (2015) 66–71.
[63] S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, V. R. Satsangi, Photoactivity of MWCNTs modified α-Fe2O3photoelectrode towards efficient solar water splitting, Renewable Energy. 83 (2015) 447-454.
[64] X. F. Shi, X. Y. Xia, G. W. Cui, N. Deng, Y. Q. Zhao, L. H. Zhuo, B. Tang, Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity, Applied Catalysis B: Environmental. 163 (2015).
[65] J. Su, L. Guo, N. Bao C. A. Grimes, Nanostructured WO3/BiVO4heterojunction films for efficient photoelectrochemical water splitting, Nano Letters. 11(5) (2011) 1928-(1933).
DOI: 10.1021/nl2000743
[66] A. Gasparotto, D. Barreca, D. Bekermann, A. Devi, R. A. Fischer, P. Fornasiero, V. Gombac, O. I. Lebedev, C. MacCato, T. Montini, G. Van Tendeloo, E. Tondello, F-doped Co3O4photocatalysts for sustainable H2 generation from water/ethanol, Journal of the American Chemical Society. 133(48) (2011).
DOI: 10.1021/ja210078d
[67] B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, W. Shi, Hydrothermal synthesis g-C3N4/Nano-InVO4nanocomposite and enhanced photocatalytic activity for hydrogen production under visible light radiation, ACS Applied Materials and Interfaces. 7(33) (2015).
[68] G. Yang, W. Yan, Q. Zhang, S. Shen, S. Ding, One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: Tunable morphology and efficient photocatalytic hydrogen production. Nanoscale. 5(24) (2013) 12432-12439.
DOI: 10.1039/c3nr03462c
[69] J. Yuan, J. Wen, Y. Zhong, X. Li, Y. Fang, S. Zhang, W. Liu, Enhanced photocatalytic H2 evolution over noble-metal-free NiScocatalyst modified CdSnanorods/g-C3N4heterojunctions, Journal of Materials Chemistry A. 3(35) (2015) 18244-18255.
DOI: 10.1039/c5ta04573h
[70] Q. Liang, G. Jiang, Z. Zhao, Z. Li, M. J. Maclachlan, CdS-decorated triptycene-based polymer: Durable photocatalysts for hydrogenproduction under visible-light irradiation, Catalysis Science and Technology. 5(6) (2015) 3368-3374.
DOI: 10.1039/c5cy00470e
[71] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSenanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting, Angewandte Chemie International Edition. 54(32) (2015) 9351-9355.
[72] Y. Dong, Y. Chen, P. Jiang, G. Wang, X. Wu, R. Wu, C. Zhang, Efficient and stable MoS2/CdSe/NiOphotocathode for photoelectrochemical hydrogen generation from water, Chemistry-An Asian Journal. 10(8) (2015) 1660-1667.
[73] P. Tongying, F. Vietmeyer, D. Aleksiuk, G. J. Ferraudi, G. Krylova, M. Kuno, Double heterojunction nanowire photocatalysts for hydrogen generation, Nanoscale. 6(8) (2014) 4117-4124.
DOI: 10.1039/c4nr00298a
[74] J. J. Wang, Z. J. Li, X. B. Li, X. B. Fan, Q. Y. Meng, S. Yu, C. B. Li, J. X. Li, C. H. Tung, L. Z. Wu, Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation, ChemSusChem. 7(5) (2014).
[75] P. Wang, P. Chen, A. Kostka, R. Marschall, M. Wark, Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production, Chemistry of Materials. 25(23) (2013) 4739-4745.
DOI: 10.1021/cm402708h
[76] Y. Zhang, L. Kang, J. Shang, H. Gao, A low cost synthesis of fly ash-based mesoporousnanocomposites for production of hydrogen by photocatalytic water-splitting, Journal of Materials Science. 48(16) (2013) 5571-5578.
[77] T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale, F. A. Armstrong, Efficient and clean photo-reduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light, Journal of American Chemical Society. 132(7) (2010).
DOI: 10.1021/ja910091z
[78] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angewandte Chemie. International Edition. 52(29) (2013) 7372-7408.
[79] D.C. B. Alves, R. Silva, D. Voiry, T. Asefa, M. Chhowalla, Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction, Materials for Renewable and Sustainable Energy. 4(2) (2015). DOI: 10. 1007/s40243-015-0042-0.
[80] Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye, Photocatalytic Reduction of Carbon Dioxide by Hydrous Hydrazine over Au–Cu Alloy Nanoparticles Supported on SrTiO3/TiO2 Coaxial Nanotube Arrays, Angewandte Chemie International Edition. 54(3) (2015).
[81] P. Praus, R. Dvorsky, O. Kozak, K. KociVsb, Zinc sulphide nanoparticles for photochemical reactions: reduction of carbon dioxide and oxidation of phenol, Nanocon, Brno, Czech Republic. EU (2011).
[82] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev. 114(19) (2014) 9987-10043.
DOI: 10.1021/cr500008u
[83] P. Akhter, M. Hussain, G. Saracco, N. Russo, Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas, Fuel. 149 (2015) 55-65.
[84] D. Chen, X. Zhang, A. F. Lee, Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals, Journal of Materials Chemistry A. 3(28) (2015) 14487-14516.
DOI: 10.1039/c5ta01592h
[85] A. Cybula, M. Klein, A. Zielińska-Jurek, M. Janczarek, A. Zaleska, Carbon dioxide photoconversion. The effect of titanium dioxide immobilization conditions and photocatalyst type, Physicochemical Problems of Mineral Processing. 48(1) (2012).
[86] N. M. Dimitrijevic, Investigation of the charge-transfer in photo-excited nanoparticles for CO2 reduction in non-aqueous media, Journal of the Serbian Chemical Society. 78 (11) (2013) 1797–1807.
[87] Y. Park, D. Shin, Y. N. Jang, A. H. A. Park, CO2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, Journal of Chemical & Engineering Data. 57(1) (2012).
DOI: 10.1021/je200623b
[88] X. Limei, Z. Fenghua, C. Bin, B. Xuefeng, Preparation of Light-Driven Spinel Nanoparticles CoAl2O4, MgFe2O4 and CoFe2O4 and Their Photocatalytic Reduction of Carbon Dioxide, International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). (2011).
[89] L. L. Tan, W. J. Ong, S. P. Chai, A. R. Mohamed, Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide, Nanoscale Research Letters. 8 (2013) 465.
[90] O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels, Nano Letters. 9(2) (2009) 731-737.
DOI: 10.1021/nl803258p
[91] W. N. Wang, Y. Jiang, J. D. Fortner, P. Biswas, Nanostructured Graphene-Titanium Dioxide Composites Synthesized by a Single-Step Aerosol Process for Photoreduction of Carbon Dioxide, Environmental Engineering Science. 31(7) (2014) 428-434.
[92] L. Roldan, Y. Mareo, E. Garcia-Bordeje, Function of the support and metal loading on catalytic CO2 reduction using Ru nanoparticles supported on carbon nanofibers, ChemCatChem. 7(8) (2015) 1347-1356.
[93] N. Murakami, D. Saruwatari, T. Tsubota, T. Ohno, photocatalytic reduction of carbon dioxide over shape-controlled titanium(IV) oxide nanoparticles with co-catalyst loading, Current Organic Chemistry. 17(21) (2013) 2449-2453.
[94] H. Wang, J. Hodgson, T. B. Shrestha, P. S. Thapa, D. Moore, X. Wu, M. Ikenberry, D. L. Troyer, D. Wang, K. L. Hohn, S. H. Bossmann, Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst, Beilstein Journal of Nanotechnology. 5 (2014).
DOI: 10.3762/bjnano.5.88