Direct Sunlight Active Sm3+ Doped TiO2 Photocatalyst

Article Preview

Abstract:

TiO2 and Sm3+ doped TiO2 nanocrystalline has been successfully synthesized by a modified sol-gel method. As synthesized samples of TiO2 and Sm3+ doped TiO2 were calcined at 300, 500, 700 and 800OC and characterized by various techniques such as XRD, UV/Vis Reflectance spectroscopy, FTIR, SEM-EDS and TEM. The crystallite size of Sm3+ doped TiO2 at all calcination temperature is lower than that of TiO2 due the doping Sm3+ ion and thereby induced more nanobehavior. FTIR spectroscopy confirmed the presence of Ti-O and Ti-O-Ti bond in TiO2, in Sm3+ doped TiO2 along with Ti-O and Ti-O-Ti, the presence Sm-O and Ti-O-Sm bonds are confirmed. Diffuse reflectance spectra showed that the Sm3+ doped TiO2 have a significant shift to longer wavelengths and an extension of the absorption in the visible region compared to the TiO2. SEM images confirmed that the particles are agglomerated and the particle size was decreased in the Sm3+ doped TiO2 in comparison with the TiO2. EDS analysis showed the presence of Sm3+ ion present in the lattice of TiO2 in doped sample. Finally the photocatalytic activity of TiO2 and Sm3+ doped TiO2 at various calcinations temperatures was investigated by the degradation of methylene blue solution under UV light and visible light. Doping with the samarium ions significantly enhanced the overall photocatalytic activity for MB degradation under both UV and visible light irradiation. The results showed that the Sm3+ doped TiO2 sample calcined at 700 OC shows the highest photocatalytic activity under UV light and visible light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-44

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Arslan-Aloton, Advanced oxidation of textile industry dyes, S. Parsons (Ed. ), IWA Publishing, London. (2004) 302–308.

Google Scholar

[2] A. Houas, H. Lachheb, M. Ksibi, E. Elalooui, C. Guillard, J.M. Herrmann, App. Catal. B Environ. 31 (2001)145–157.

Google Scholar

[3] M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann, App. Catal. B Environ. 51 (2004)183–194.

Google Scholar

[4] X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev. 114 (2014) 9346−9384.

Google Scholar

[5] R.J. Tayade, H.C. Bajaj, R.V. Jasra, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.

Google Scholar

[6] R.J. Tayade, H.C. Bajaj, R.V. Jasra, Desalination. 275 (2011) 160-165.

Google Scholar

[7] R.J. Tayade, P.K. Surolia, M.A. Lazar, R.V. Jasra, Ind. Eng. Chem. Res. 47 (2008) 7545-7551.

Google Scholar

[8] P. Periyat, D. E. Mccormack,S. J. Hinder, S. C. Pillai,J. Phys. Chem. C. 113 (2009) 3246-3253.

Google Scholar

[9] P. Periyat, D. E. Mccormack, J. Colreavy, S. J. Hinder, S. C. Pillai. J. Phys. Chem. C. 112(2008) 7644-7652.

Google Scholar

[10] P. Periyat, K.V. Baiju, P. Mukundan, KGK Warrier, Applied Cata. A: Gen. 349 (2008) 349-354.

Google Scholar

[11] P. Periyat, P.A. Saeed, S.G. Ullattil, Mater. Sci. Semicond. Process. 31 (2015) 658-664.

Google Scholar

[12] S.C. Pillai, P. Periyat, R. G. Kutty, D.E. McCormack, M. K. Seery, H. Hayden, J. Colreavy, D. Corr and S.J. Hinder, J. Phys. Chem. C. 111 (2007) 1605-1612.

DOI: 10.1021/jp065933h

Google Scholar

[13] C. Liang, F. Li, C. Liu, J. Lu, X. Wang, Dyes and Pigments. 76 (2008) 477-484.

Google Scholar

[14] Q. Xiao, Z. Si , Z. Yu , G. Qiu, Mater. Sci. Eng.B. 137 (2007)189-195.

Google Scholar

[15] J. Shi, J. Zheng, Y. Hu and Y. Zhao, Environ. Eng. Sci. 25(2008) 489-496.

Google Scholar

[16] D. J. Park, T. Sekino, S. Tsukuda S. Tanaka, Res. Chem. Intermed, 39 (2013) 1581–1591.

Google Scholar

[17] A.M. Ferrari-Lima R.G. Marques, M.L. Gimenes, N.R.C. Fernandes-Machado, Catal. Today 254(2015) 119–128.

Google Scholar

[18] X. Z. Ding, X. H. Liu, J. Mater. Res. 13 (1998) 2556-2562.

Google Scholar

[19] J. Lin, J. C. Yu, J. Photochem. Photobiol. Chem.A. 116 (1998) 63-67.

Google Scholar

[20] Y. P. Yang, K. L. Huang, J. Rare Earth. 4 (1996) 20-22.

Google Scholar

[21] W. Li, Y. Wang, H. Lin, S. I. Shah, C.P. Doren, S.A. Rykov, J.G. Chen M.A. Barteau, Appl. Phys. Lett. 83 (2003)4143-4145.

DOI: 10.1063/1.1627962

Google Scholar

[22] E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca, J. Am. Chem. Soc. 104 (1982)2996-3002.

DOI: 10.1021/ja00375a010

Google Scholar

[23] K.V. Baiju, C. P. Sibu, K. Rajesha, P. K. Pillai, P. Mukundan, K. G. K. Warrier, W. Wunderlich, Mater. Chem. Phy. 90 (2005) 123–127.

Google Scholar

[24] K.M. Parida, N. Sahu, J. Mol. Catal. A: Chem. 287 (2008) 151-158.

Google Scholar

[25] V. Stengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114 (2008) 217-226.

Google Scholar

[26] Q. Xiao ,Z. Si, J. Zhang, C. Xiao, X. Tan, J. Hazard. Mater. 150 (2008)62-67.

Google Scholar

[27] Chun-Hua Liang , Fang-Bai Li , Cheng-Shuai Liu , Jia-Long Lu, Xu-Gang Wang, Dyes and pigments. 76 (2008) 477-484.

Google Scholar

[28] M. Saif, M.S.A. Abdel-Mottaleb, Inorg. Chim. Acta. 360 (2007) 2863-2874.

Google Scholar

[29] D. G. Huang, S.J. Liao, W.B. Zhou, S.Q. Quan, L. Liu, Z.J. He, J.B. Wan, J. Phys. Chem. Solids 70 (2009) 853-859.

Google Scholar