[1]
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
Google Scholar
[2]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev. 43 (2014) 5234-5244.
DOI: 10.1039/c4cs00126e
Google Scholar
[3]
A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[4]
J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (2014) 7787-7812.
DOI: 10.1039/c3cs60425j
Google Scholar
[5]
A. Hu, X. Zhang, D. Luong, K.D. Oakes, M.R. Servos, R. Liang, S. Kurdi, P. Peng, Y. Zhou, Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment, Waste Biomass Valor, 3 (2012) 443-449.
DOI: 10.1007/s12649-012-9142-6
Google Scholar
[6]
G.S. Mital, T. Manoj, A review of TiO2 nanoparticles, chinese. Sci. bull. 56 (2011) 1639-1657.
Google Scholar
[7]
N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today, 225 (2014) 34-51.
DOI: 10.1016/j.cattod.2013.10.090
Google Scholar
[8]
T.A. Kandiel, R. Dillert, A. Feldhoff, D.W. Bahnemann, Direct Synthesis of Photocatalytically Active Rutile TiO2 Nanorods Partly Decorated with Anatase Nanoparticles, J. Phys. Chem. C. 114 (2010) 4909-4915.
DOI: 10.1021/jp912008k
Google Scholar
[9]
M. Liu, L. Piao, W. Lu, S. Ju, L. Zhao, C. Zhou, H. Li, W. Wang, W. Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis, Nanoscale 2 (2010) 1115-1117.
DOI: 10.1039/c0nr00050g
Google Scholar
[10]
M. Dahl, Y. Liu, Y. Yin, Composite Titanium Dioxide Nanomaterials, Chem. Rev. 114 (2014) 9853-9889.
DOI: 10.1021/cr400634p
Google Scholar
[11]
P.K. Surolia, R.J. Tayade, M.A. Lazar, R.V. Jasra, Photocatalytic Degradation of 3, 3'-Dimethylbiphenyl-4, 4'-diamine (o-Tolidine) over Nanocrystalline TiO2 Synthesized by Sol-Gel, Solution Combustion, and Hydrothermal Methods, Ind. Eng. Chem. Res. 47 (2008).
DOI: 10.1021/ie800073j
Google Scholar
[12]
F. Akbal, Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters, Environ. Prog. Sustain. Energy. 24 (2005) 317-322.
DOI: 10.1002/ep.10092
Google Scholar
[13]
R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.
DOI: 10.1021/ie051362o
Google Scholar
[14]
R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes, Ind. Eng. Chem. Res. 48 (2009) 10262-10267.
DOI: 10.1021/ie9012437
Google Scholar
[15]
T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UVLED/TiO2 process for the degradation of rhodamine B dye, Chem. Eng. J. 169 (2011) 126-134.
DOI: 10.1016/j.cej.2011.02.066
Google Scholar
[16]
T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Energy Efficient UV-LED Source and TiO2 Nanotube Array-Based Reactor for Photocatalytic Application, Ind. Eng. Chem. Res. 50 (2011) 7753-7762.
DOI: 10.1021/ie200493k
Google Scholar
[17]
K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes, Chem. Eng. J. 178 (2011) 40-49.
DOI: 10.1016/j.cej.2011.10.007
Google Scholar
[18]
W.K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy‐efficient light emitting diodes, Chinese J. Catal. 35 (2014) 1781-1792.
DOI: 10.1016/s1872-2067(14)60205-9
Google Scholar
[19]
Jo, W.K.; G. T. Park, R. J. Tayade, Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor, J. Chem. Technol. Biotechnol. 2014, DOI: 10. 1002/jctb. 4547.
DOI: 10.1002/jctb.4547
Google Scholar
[20]
T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir 14 (1998) 3160-3163.
DOI: 10.1021/la9713816
Google Scholar
[21]
R. Yoshida, Y. Suzuki, S. Yoshikawa, Synthesis of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, J. Solid State Chem. 178 (2005) 2179-2185.
DOI: 10.1016/j.jssc.2005.04.025
Google Scholar
[22]
L. Cui, K.N. Hui, K.S. Hui, S.K. Lee, W. Zhou, Z.P. Wan, C.H. Thu, Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes, Mater. Lett. 75 (2012) 175-178.
DOI: 10.1016/j.matlet.2012.02.004
Google Scholar
[23]
Q. Luo, Q. Cai, X. Li, X. Chen, Characterization and photocatalytic activity of large-area single crystalline anatase TiO2 nanotube films hydrothermal synthesized on Plasma electrolytic oxidation seed layers, J Alloy Compd. 597 (2014) 101-109.
DOI: 10.1016/j.jallcom.2014.01.216
Google Scholar
[24]
D. Wang, F. Zhou, Y. Liu, W. Liu, Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder, Mater. Lett. 62 (2008) 1819-1822.
DOI: 10.1016/j.matlet.2007.10.011
Google Scholar
[25]
R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline TiO2, Ind. Eng. Chem. Res. 45 (2006) 922-927.
DOI: 10.1021/ie051060m
Google Scholar
[26]
B. Erjavec, R. Kaplan, A. Pintar, Effects of heat and peroxide treatment on photocatalytic activity of titanate nanotubes, Catal. Today. 241 (2015) 15-24.
DOI: 10.1016/j.cattod.2014.04.005
Google Scholar
[27]
C.C. Tsai, H. Teng, Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment, Chem. Mater. 16 (2004) 4352-4358.
DOI: 10.1021/cm049643u
Google Scholar
[28]
Y.Z. Zeng, Y. Liu, Y.F. Lu, J.C. Chung, Study on the Preparation of Nanosized Titanium Dioxide with Tubular Structure by Hydrothermal Method and their Photocatalytic Activity, Int. J. Chem. Eng. App. 5 (2014) 234-239.
DOI: 10.7763/ijcea.2014.v5.385
Google Scholar
[29]
J. Chen, H. Wang, X. Wei, L. Zhu, Characterization, properties and catalytic application of TiO2 nanotubes prepared by ultrasonic-assisted sol-hydrothermal method, Mater. Res. Bull. 47 (2012) 3747-3752.
DOI: 10.1016/j.materresbull.2012.06.029
Google Scholar
[30]
J. Yu, H. Yu, B. Cheng, C. Trapalis, Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes, J. Mol. Catal. A-Chem. 249 (2006) 135-142.
DOI: 10.1016/j.molcata.2006.01.003
Google Scholar
[31]
J. Huang, Y. Cao, M. Wang, C. Huang, Z. Deng, H. Tong, Z. Liu, Tailoring of Low-Dimensional Titanate Nanostructures, J. Phys. Chem. C. 114 (2010) 14748-14754.
DOI: 10.1021/jp104044j
Google Scholar
[32]
L. Xiong, C. Chen, Q. Chen, J. Ni, Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method, J. Hazard. Mater. 189 (2011) 741-748.
DOI: 10.1016/j.jhazmat.2011.03.006
Google Scholar
[33]
E. Morgado, M.A.S. Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim, A.S. Araujo, Characterization of Nanostructured Titanates Obtained by Alkali Treatment of TiO2-Anatases with Distinct Crystal Sizes, Chem. Mater. 19 (2007) 665-676.
DOI: 10.1021/cm061294b
Google Scholar
[34]
B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett. 82 (2003) 281-283.
Google Scholar
[35]
M. Vautier, C. Guillard, J.M. Herrmann, Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine, J. Catal. 201 (2001) 46-59.
DOI: 10.1006/jcat.2001.3232
Google Scholar
[36]
L. Costa, A.G.S. Prado, TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye, J. Photoch. Photobio A. 201 (2009) 45-49.
DOI: 10.1016/j.jphotochem.2008.09.014
Google Scholar
[37]
D. Fang, K. Huang, S. Liu, J. Huang, Fabrication and Photoluminiscent Properties of Titanium Oxide Nanotube Arrays, J. Braz. Chem. Soc. 19 (2008) 1059-1064.
DOI: 10.1590/s0103-50532008000600002
Google Scholar
[38]
W. Teng, X. Li, Q. Zhao, G. Chen, Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation, J. Mater. Chem. A. 1 (2013) 9060-9067.
DOI: 10.1039/c3ta11254c
Google Scholar
[39]
A.H. Ali, Study on the photocatalytic degradation of indigo carmine dye by TiO2 photocatalyst, Journal of Kerbala University, 11 (2013) 145-153.
Google Scholar