Photocatalytic Degradation of Indigo Carmine Dye Using Hydrothermally Synthesized Anatase TiO2 Nanotubes under Ultraviolet Light Emitting Diode Irradiation

Article Preview

Abstract:

Anatase TiO2 nanotubes (ATNT) was synthesised by hydrothermal method using anatase TiO2 nanoparticles (AT) as precursor and calcined at two different temperatures (250 & 450 °C) for 2 h. The AT and synthesized ATNT photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurements, UV-vis diffuse reflectance and Fourier Transform Infra-red spectroscopy techniques for their structural, textural and electronic properties. The photocatalytic degradation of Indigo carmine (IC) dye aqueous solution has carried out using ATNT-250 and ATNT-450 photocatalysts under UVLED irradiation. The kinetic analysis has also revealed that the degradation of IC dye solution follows first order kinetic model. The overall study demonstrates the appropriate band gap of the photocatalysts used and the suitable irradiation source which could accelerate the rate of photocatalytic degradation. The band gap of the synthesised ATNT is not much affected due to the change in morphology from nanoparticle to nanotube. The results demonstrated that the irradiation of UV-LED could be utilised for the degradation of organic dyes

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-57

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[2] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev. 43 (2014) 5234-5244.

DOI: 10.1039/c4cs00126e

Google Scholar

[3] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[4] J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (2014) 7787-7812.

DOI: 10.1039/c3cs60425j

Google Scholar

[5] A. Hu, X. Zhang, D. Luong, K.D. Oakes, M.R. Servos, R. Liang, S. Kurdi, P. Peng, Y. Zhou, Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment, Waste Biomass Valor, 3 (2012) 443-449.

DOI: 10.1007/s12649-012-9142-6

Google Scholar

[6] G.S. Mital, T. Manoj, A review of TiO2 nanoparticles, chinese. Sci. bull. 56 (2011) 1639-1657.

Google Scholar

[7] N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today, 225 (2014) 34-51.

DOI: 10.1016/j.cattod.2013.10.090

Google Scholar

[8] T.A. Kandiel, R. Dillert, A. Feldhoff, D.W. Bahnemann, Direct Synthesis of Photocatalytically Active Rutile TiO2 Nanorods Partly Decorated with Anatase Nanoparticles, J. Phys. Chem. C. 114 (2010) 4909-4915.

DOI: 10.1021/jp912008k

Google Scholar

[9] M. Liu, L. Piao, W. Lu, S. Ju, L. Zhao, C. Zhou, H. Li, W. Wang, W. Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis, Nanoscale 2 (2010) 1115-1117.

DOI: 10.1039/c0nr00050g

Google Scholar

[10] M. Dahl, Y. Liu, Y. Yin, Composite Titanium Dioxide Nanomaterials, Chem. Rev. 114 (2014) 9853-9889.

DOI: 10.1021/cr400634p

Google Scholar

[11] P.K. Surolia, R.J. Tayade, M.A. Lazar, R.V. Jasra, Photocatalytic Degradation of 3, 3'-Dimethylbiphenyl-4, 4'-diamine (o-Tolidine) over Nanocrystalline TiO2 Synthesized by Sol-Gel, Solution Combustion, and Hydrothermal Methods, Ind. Eng. Chem. Res. 47 (2008).

DOI: 10.1021/ie800073j

Google Scholar

[12] F. Akbal, Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters, Environ. Prog. Sustain. Energy. 24 (2005) 317-322.

DOI: 10.1002/ep.10092

Google Scholar

[13] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.

DOI: 10.1021/ie051362o

Google Scholar

[14] R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes, Ind. Eng. Chem. Res. 48 (2009) 10262-10267.

DOI: 10.1021/ie9012437

Google Scholar

[15] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UVLED/TiO2 process for the degradation of rhodamine B dye, Chem. Eng. J. 169 (2011) 126-134.

DOI: 10.1016/j.cej.2011.02.066

Google Scholar

[16] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Energy Efficient UV-LED Source and TiO2 Nanotube Array-Based Reactor for Photocatalytic Application, Ind. Eng. Chem. Res. 50 (2011) 7753-7762.

DOI: 10.1021/ie200493k

Google Scholar

[17] K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes, Chem. Eng. J. 178 (2011) 40-49.

DOI: 10.1016/j.cej.2011.10.007

Google Scholar

[18] W.K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy‐efficient light emitting diodes, Chinese J. Catal. 35 (2014) 1781-1792.

DOI: 10.1016/s1872-2067(14)60205-9

Google Scholar

[19] Jo, W.K.; G. T. Park, R. J. Tayade, Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor, J. Chem. Technol. Biotechnol. 2014, DOI: 10. 1002/jctb. 4547.

DOI: 10.1002/jctb.4547

Google Scholar

[20] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[21] R. Yoshida, Y. Suzuki, S. Yoshikawa, Synthesis of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, J. Solid State Chem. 178 (2005) 2179-2185.

DOI: 10.1016/j.jssc.2005.04.025

Google Scholar

[22] L. Cui, K.N. Hui, K.S. Hui, S.K. Lee, W. Zhou, Z.P. Wan, C.H. Thu, Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes, Mater. Lett. 75 (2012) 175-178.

DOI: 10.1016/j.matlet.2012.02.004

Google Scholar

[23] Q. Luo, Q. Cai, X. Li, X. Chen, Characterization and photocatalytic activity of large-area single crystalline anatase TiO2 nanotube films hydrothermal synthesized on Plasma electrolytic oxidation seed layers, J Alloy Compd. 597 (2014) 101-109.

DOI: 10.1016/j.jallcom.2014.01.216

Google Scholar

[24] D. Wang, F. Zhou, Y. Liu, W. Liu, Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder, Mater. Lett. 62 (2008) 1819-1822.

DOI: 10.1016/j.matlet.2007.10.011

Google Scholar

[25] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline TiO2, Ind. Eng. Chem. Res. 45 (2006) 922-927.

DOI: 10.1021/ie051060m

Google Scholar

[26] B. Erjavec, R. Kaplan, A. Pintar, Effects of heat and peroxide treatment on photocatalytic activity of titanate nanotubes, Catal. Today. 241 (2015) 15-24.

DOI: 10.1016/j.cattod.2014.04.005

Google Scholar

[27] C.C. Tsai, H. Teng, Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment, Chem. Mater. 16 (2004) 4352-4358.

DOI: 10.1021/cm049643u

Google Scholar

[28] Y.Z. Zeng, Y. Liu, Y.F. Lu, J.C. Chung, Study on the Preparation of Nanosized Titanium Dioxide with Tubular Structure by Hydrothermal Method and their Photocatalytic Activity, Int. J. Chem. Eng. App. 5 (2014) 234-239.

DOI: 10.7763/ijcea.2014.v5.385

Google Scholar

[29] J. Chen, H. Wang, X. Wei, L. Zhu, Characterization, properties and catalytic application of TiO2 nanotubes prepared by ultrasonic-assisted sol-hydrothermal method, Mater. Res. Bull. 47 (2012) 3747-3752.

DOI: 10.1016/j.materresbull.2012.06.029

Google Scholar

[30] J. Yu, H. Yu, B. Cheng, C. Trapalis, Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes, J. Mol. Catal. A-Chem. 249 (2006) 135-142.

DOI: 10.1016/j.molcata.2006.01.003

Google Scholar

[31] J. Huang, Y. Cao, M. Wang, C. Huang, Z. Deng, H. Tong, Z. Liu, Tailoring of Low-Dimensional Titanate Nanostructures, J. Phys. Chem. C. 114 (2010) 14748-14754.

DOI: 10.1021/jp104044j

Google Scholar

[32] L. Xiong, C. Chen, Q. Chen, J. Ni, Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method, J. Hazard. Mater. 189 (2011) 741-748.

DOI: 10.1016/j.jhazmat.2011.03.006

Google Scholar

[33] E. Morgado, M.A.S. Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim, A.S. Araujo, Characterization of Nanostructured Titanates Obtained by Alkali Treatment of TiO2-Anatases with Distinct Crystal Sizes, Chem. Mater. 19 (2007) 665-676.

DOI: 10.1021/cm061294b

Google Scholar

[34] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett. 82 (2003) 281-283.

Google Scholar

[35] M. Vautier, C. Guillard, J.M. Herrmann, Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine, J. Catal. 201 (2001) 46-59.

DOI: 10.1006/jcat.2001.3232

Google Scholar

[36] L. Costa, A.G.S. Prado, TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye, J. Photoch. Photobio A. 201 (2009) 45-49.

DOI: 10.1016/j.jphotochem.2008.09.014

Google Scholar

[37] D. Fang, K. Huang, S. Liu, J. Huang, Fabrication and Photoluminiscent Properties of Titanium Oxide Nanotube Arrays, J. Braz. Chem. Soc. 19 (2008) 1059-1064.

DOI: 10.1590/s0103-50532008000600002

Google Scholar

[38] W. Teng, X. Li, Q. Zhao, G. Chen, Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation, J. Mater. Chem. A. 1 (2013) 9060-9067.

DOI: 10.1039/c3ta11254c

Google Scholar

[39] A.H. Ali, Study on the photocatalytic degradation of indigo carmine dye by TiO2 photocatalyst, Journal of Kerbala University, 11 (2013) 145-153.

Google Scholar