[1]
Goel M, Chovelon, J.M., Ferronato, C., Bayard R. and T.R. Sreekrishnan. (2010).
Google Scholar
[2]
Gogate, P,R., Pandit, A,B., (2004). A review of imperative technologies for wastewater treatment I : oxidation technologies at ambient conditions. Adv Environ Res. 8: 501-551.
DOI: 10.1016/s1093-0191(03)00032-7
Google Scholar
[3]
Pandit, G,G., Rao, M., Jha, A,M., Krishnamoorthy, S,K., Kale, T,M., Raghu, S,P., Murthy, N, B,K., (2001). Monitoring of organochlorine pesticide residues in the Indian marine environment. Chemosphere. 44: 301–305.
DOI: 10.1016/s0045-6535(00)00179-x
Google Scholar
[4]
Katsumata. H, K, Matsuba., S, Kaneco., T, Suzuki., K, Ohta., Y, Yobiko., (2004) Degradation of carbofuran in aqueous solution by Fe(III) aqua complexes as effective photocatalysts. J. Photochem. Photobiol., A: Chem. 170 : 239–245.
DOI: 10.1016/j.jphotochem.2004.09.002
Google Scholar
[5]
Malato S, J, Blanco., C, Richter., P, Fernandez., M, I, Maldonado., (2000). Solar photocatalytic mineralization of commercial pesticides: oxamyl, Solar Energy Mater. Solar cells. 64: 1–96.
DOI: 10.1016/s0927-0248(00)00037-4
Google Scholar
[6]
Kamrin, M,A., (1997). Pesticide Profiles: toxicity, environmental impact, and fate. CRC Press.
Google Scholar
[7]
Titus, M,P., Molina, V,G., Baños, M,A., Giménez, J., Esplugas, S., (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B: Environ. 47: 219-256.
DOI: 10.1016/j.apcatb.2003.09.010
Google Scholar
[8]
Lee, M., Oh, J., (2010) Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution. Ultrason Sonochem. 17: 207-212.
DOI: 10.1016/j.ultsonch.2009.06.018
Google Scholar
[9]
Güyer G,J., Ince, N,H., (2011)Degradation of diclofenac in water by homogeneous and heterogeneous sonolysis. Ultrason Sonochem. 18: 114–119.
DOI: 10.1016/j.ultsonch.2010.03.008
Google Scholar
[10]
Gouvea, C., Wypych, F., Moraes, S., Durán, N., Zamora, P., (2000). Semiconductor- assisted photodegradation of lignin, dye and Kraft effluent by Ag-dopped ZnO. Chemosphere. 40 : 427–432.
DOI: 10.1016/s0045-6535(99)00312-4
Google Scholar
[11]
Yeber, M,C., Rodriguez, J., Freer, J., Dur, E., Mansilla, H., (2000). Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere. 41: 1193-1197.
DOI: 10.1016/s0045-6535(99)00551-2
Google Scholar
[12]
Herrmann, J,M., (1999). Heterogeneous photocatalysis: fundamentals and applications to removal of various types of aqueous pollutants. Catal. Today 53: 115.
DOI: 10.1016/s0920-5861(99)00107-8
Google Scholar
[13]
Julio, C., Morales Mejia., Lucero Angeles., Rafael Almanza., (2014) . Synthesis and Characterization of TiO2 Porous Films for Heterogeneous Photocatalysis. Computational Water, Energy, and Environmental Engineering. 3: 4-5.
Google Scholar
[14]
Andreozzi, R., Caprio, V., Insola, A., Longo, G., Tufano, V. (2000). Photocatalytic oxidation of 4-nitrophenol in aqueous TiO2 slurries: an experimental validation of literature kinetic models . J Chem Technol Biotechnol. 75-131.
DOI: 10.1002/(sici)1097-4660(200002)75:2<131::aid-jctb191>3.0.co;2-f
Google Scholar
[15]
Fresno, F., Guillard, C., Coronado, J., Chovelon, J,M., Tudela, D., Soria, J., Herrmann, J., (2005).
Google Scholar
[16]
Deepika, M., Neeru, C., Rajat, A., Suresh,C. (2003). Photochemical degradation of chlorobenzene by photo-fenton's reagent. Int.J. Chem. Sci. 1(1): 41-48.
Google Scholar
[17]
C, Su., B, Y, Hong., C, M, Tseng., (2004) . Sol–gel preparation and photocatalysis of titanium Dioxide. Catal. Today. 96: 119-126.
DOI: 10.1016/j.cattod.2004.06.132
Google Scholar
[18]
Chen, J., Wang, D., Zhu, M., Gao, C., (2007). Photocatalytic degradation of dimethoate using nanosized TiO2 powder. Desalination. 207: 87-94.
DOI: 10.1016/j.desal.2006.06.012
Google Scholar
[19]
Navarro, S., Fenoll, J., Vela, N., Ruiz, E., Navarro, G. (2009). Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. Journal of Hazardous Materials. 1303-1310.
DOI: 10.1016/j.jhazmat.2009.07.137
Google Scholar
[20]
Verma,A., poonam., Dixit, D. (2012). Photocatalytic degradability of insecticide chlorpyrifos over uv irradiated titanium dioxide in aqueous phase. International journal of environmental sciences. 3: 2.
Google Scholar
[21]
Ioannis, K, K., Theophanis, M, S., Sakkas, V, A., Albanis, T, A. (2001). Photocatalytic Degradation of Selected s-Triazine Herbicides and Organophosphorus Insecticides over Aqueous TiO2 Suspensions. Environ. Sci. Technol. 35: 398-405.
DOI: 10.1021/es001271c
Google Scholar
[22]
Verma A., Monika S., Amrit, P, T. (2013). Titanium dioxide mediated photocatalytic degradation of malathionin aqueous phase. Indian journal of Chemical technology. 46-51.
Google Scholar
[23]
Reddy, A, K., Reddy, P, V, L., Sharma, V, M., Srinivas, B., Kumari, V, D., Subrahmanyam, M. (2010). Photocatalytic Degradation of Isoproturon Pesticide on C, N and S Doped TiO2. J. Water Resource and Protection. 235-244.
DOI: 10.4236/jwarp.2010.23027
Google Scholar
[24]
Suja, P., Devipriya., Suguna, Y. (2010). Photocatalytic degradation of phenol in water using TiO2 and ZnO. Journal of Environmental Biology. 247-249.
Google Scholar
[25]
Amin, M, B., Kawther, A, O., Mohamed, M, M. (2012). Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. Sci. 7 : 6654 – 6665.
DOI: 10.1016/s1452-3981(23)15737-3
Google Scholar
[26]
Agarwal, V., Das, S. (2010). Degradation of monocrotophos pesticides using the advanced oxidation method. Journal of Environment and Waste Management. 1(1): 2-10.
Google Scholar
[27]
Aparna,R., Munusamy,S. ( 2013). Photocatalytic effect of TiO2 and the effect of Dopants on degradation of brilliant green. Sustainable Chemical Processes. 1: 4.
DOI: 10.1186/2043-7129-1-4
Google Scholar
[28]
Ali,R., Hassan,S. (2008). Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst. The Malaysian Journal of Analytical Sciences. 12: 1.
Google Scholar
[29]
Albert, T., Bini, D., Didier, R., Drissa, B., Patrick, A. (2008). Photocatalytic degradation of the diuron pecticide. Environ Chem Lett. 6: 163-167.
Google Scholar
[30]
Anju, S,G., Hariprasad, N., Yesodharan, E, P., Yesodharan, S. (2013).
Google Scholar
[31]
Ji, P., Zhang, J., Chen, F., Anpo, M., ( 2009). Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Applied Catalysis B: Environmental. 85: 148-154.
DOI: 10.1016/j.apcatb.2008.07.004
Google Scholar
[32]
Qamar, M., Muneer, M., Bahnemann, D., (2006). Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Journal of Environmental Management 80: 99 -106.
DOI: 10.1016/j.jenvman.2005.09.002
Google Scholar
[33]
Singh, R., Chaudhary, R., Thakur, R, S. (2011). Performance of advanced photocatalytic detoxification of municipal wastewater under solar radiation - A mini review. International journal of energy and environment. 337-350.
Google Scholar
[34]
Shifu, C., Gengyu, C., ( 2005). Photocatalytic degradation of pesticides using floating photocatalyst TiO2/SiO2 beads by sunlight. Solar Energy 79: 1-9.
DOI: 10.1016/j.solener.2004.10.006
Google Scholar
[35]
Liu, W., Chen, Shifu., Zhao, W., Zhang, S., (2009). Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide. Desalination.
DOI: 10.1016/j.desal.2008.12.058
Google Scholar
[36]
Kaneco, S., Itoh, K., Katsumata, H., Suzuki, T., Ohta, K., (2009). Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: kinetics and mineralization. Chemical Engineering Journal. 148: 50-56.
DOI: 10.1016/j.cej.2008.07.029
Google Scholar
[37]
Sharma, M, V,P., Sadanandam, G., Ratnamala, A., Kumari, V., Subrahmanyam, M., (2009). An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. Journal of Hazardous Materials 171: 626-633.
DOI: 10.1016/j.jhazmat.2009.06.040
Google Scholar
[38]
Shafaei, A., Nikaza, M., Arami, M., (2010). Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study. Desalination, 252: 8-16.
DOI: 10.1016/j.desal.2009.11.008
Google Scholar
[39]
Muneer, M., Qamar, M., Saquib, M., Bahnemann, D., (2005). Heterogeneous photocatalysed reaction of three selected pesticide derivatives, propham, propachlor and tebuthiuron in aqueous suspension of titanium dioxide. Chemosphere. 61: 457-468.
DOI: 10.1016/j.chemosphere.2005.03.006
Google Scholar
[40]
M, U˘, gurlu., M, H, Karao˘glu., (2011).
Google Scholar
[41]
Bushnaq, Z., Othman, M, Z., Roddick, F, A., (2004) . Evaluation of UVA, UVB and UVC photolysis for the removal of atrazine from polluted water. Enviro 04 Proceedings, P. Nadebaun (ed. ), Australian Water Association, Sydney.
Google Scholar
[42]
Bahnemann, W., Muneer, M., Haque, M.M., (2007). Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catalysis Today. 124: 133-148.
DOI: 10.1016/j.cattod.2007.03.031
Google Scholar
[43]
Pareek, V., Chong, S., Tade, M., Adesina, A., ( 2008). Light intensity distribution in heterogeneous photocatalytic reactors. Asia-Pacific Journal of Chemical Engineering. 3: 171-201.
DOI: 10.1002/apj.129
Google Scholar
[44]
Gutailler, G., Valette, J.C., Guillard, C., Paisse, O., Faure, R., (2001).
Google Scholar
[45]
Wong, C,C., Chu, W., (2003). The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources. Chemosphere. 50: 981-987.
DOI: 10.1016/s0045-6535(02)00640-9
Google Scholar
[46]
J, Sun., X, Wang., J, Sun., R, Sun., S, Sun., L, Qiao., Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst, J. Mol.
DOI: 10.1016/j.molcata.2006.07.033
Google Scholar
[47]
L, P, Gianluca., A, Bono., D, Krishnaiah., J, G, Collin., (2008). Preparation of titanium dioxide.
Google Scholar
[48]
photocatalyst loaded onto activated carbon support using chemical vapor decomposition: a review paper J. Hazard. Mater. 157 : (2–3) 209–219.
Google Scholar
[49]
Xie, Z,M., Chen, Z., Dai, Y,Z., (2009). Preparation of TiO2/sepiolite photocatalyst and its application to printing and dyeing wastewater treatment. Environ. Sci. Technol. 32: 123-127.
Google Scholar
[50]
Chong, M.N., Vimonses, V., Lei, S., Jin, B., Chow, C., Saint, C., (2009). Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporus Mesoporus Mater. 117: 233-242.
DOI: 10.1016/j.micromeso.2008.06.039
Google Scholar
[51]
Sun, D., Meng, T,T., Loong, T,H., Hwa, T,J., (2004). Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Water Sci. Technol. 49: 103-110.
DOI: 10.2166/wst.2004.0030
Google Scholar
[52]
M, Silva., M, J, F, Calvetea., N, P, F, Gonc. ¸ alvesa., H, D, Burrowsa., M, Sarakhab., A, Fernandesc., M, F, Ribeiroc., M, E, Azenhaa. M, M, Pereiraa.
Google Scholar
[53]
Rahman, M.A., Qamar, M., Muneer, M., Bahnemenn, D., (2006).
Google Scholar
[54]
Senthilnathan, J., Philip, L., (2010). Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal.
DOI: 10.1016/j.cej.2010.04.034
Google Scholar
[55]
Pardeshi, S.K., Patil, A.B., (2009). Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. Journal of Molecular Catalysis A: Chemical 308: 32-40.
DOI: 10.1016/j.molcata.2009.03.023
Google Scholar
[56]
Topalov, A., Molnár-Gábor, D., Csanádi, J., (1999) Photocatalytic oxidation of the fungicide metalaxyl dissolved in water over TiO2 Water. Res. 33 : 1371.
DOI: 10.1016/s0043-1354(98)00351-0
Google Scholar
[57]
Sabin, F., Turk, T., Vogler, A., (1992). Photo-oxidation of organic compound in the presence of titanium dioxide: determination of the efficiency. J. Photochem. Photobiol. A: Chem, 63: 99-106.
DOI: 10.1016/1010-6030(92)85157-p
Google Scholar