Photochemical Removal of Pesticides: A Review

Article Preview

Abstract:

In the current era where pesticides play a vital role in one’s everyday life, large quantities of various pesticides some of which are highly toxic are being used routinely by industries and consumers. Extensive use of these chemicals provides greater risk to plants, animals and human population which has been reviewed from time to time. Apart from the biological degradation, photochemical removal holds considerable promise for the abatement of these pesticides in wastewaters. This paper reviews the photochemical degradation of pesticides. It is evident from the review that removal depends on several factors such as pH of the solution, catalysts loading, initial concentration of the pesticides, support based catalysts or suspended catalysts, light intensity and so on and so forth. Since the pesticides are ubiquitously present in the wastewaters, photochemical technology seems imperative to alleviate the pollution problems associated with the pesticides. However, commercial application of this technology has to be clearly assessed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-138

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Goel M, Chovelon, J.M., Ferronato, C., Bayard R. and T.R. Sreekrishnan. (2010).

Google Scholar

[2] Gogate, P,R., Pandit, A,B., (2004). A review of imperative technologies for wastewater treatment I : oxidation technologies at ambient conditions. Adv Environ Res. 8: 501-551.

DOI: 10.1016/s1093-0191(03)00032-7

Google Scholar

[3] Pandit, G,G., Rao, M., Jha, A,M., Krishnamoorthy, S,K., Kale, T,M., Raghu, S,P., Murthy, N, B,K., (2001). Monitoring of organochlorine pesticide residues in the Indian marine environment. Chemosphere. 44: 301–305.

DOI: 10.1016/s0045-6535(00)00179-x

Google Scholar

[4] Katsumata. H, K, Matsuba., S, Kaneco., T, Suzuki., K, Ohta., Y, Yobiko., (2004) Degradation of carbofuran in aqueous solution by Fe(III) aqua complexes as effective photocatalysts. J. Photochem. Photobiol., A: Chem. 170 : 239–245.

DOI: 10.1016/j.jphotochem.2004.09.002

Google Scholar

[5] Malato S, J, Blanco., C, Richter., P, Fernandez., M, I, Maldonado., (2000). Solar photocatalytic mineralization of commercial pesticides: oxamyl, Solar Energy Mater. Solar cells. 64: 1–96.

DOI: 10.1016/s0927-0248(00)00037-4

Google Scholar

[6] Kamrin, M,A., (1997). Pesticide Profiles: toxicity, environmental impact, and fate. CRC Press.

Google Scholar

[7] Titus, M,P., Molina, V,G., Baños, M,A., Giménez, J., Esplugas, S., (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B: Environ. 47: 219-256.

DOI: 10.1016/j.apcatb.2003.09.010

Google Scholar

[8] Lee, M., Oh, J., (2010) Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution. Ultrason Sonochem. 17: 207-212.

DOI: 10.1016/j.ultsonch.2009.06.018

Google Scholar

[9] Güyer G,J., Ince, N,H., (2011)Degradation of diclofenac in water by homogeneous and heterogeneous sonolysis. Ultrason Sonochem. 18: 114–119.

DOI: 10.1016/j.ultsonch.2010.03.008

Google Scholar

[10] Gouvea, C., Wypych, F., Moraes, S., Durán, N., Zamora, P., (2000). Semiconductor- assisted photodegradation of lignin, dye and Kraft effluent by Ag-dopped ZnO. Chemosphere. 40 : 427–432.

DOI: 10.1016/s0045-6535(99)00312-4

Google Scholar

[11] Yeber, M,C., Rodriguez, J., Freer, J., Dur, E., Mansilla, H., (2000). Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere. 41: 1193-1197.

DOI: 10.1016/s0045-6535(99)00551-2

Google Scholar

[12] Herrmann, J,M., (1999). Heterogeneous photocatalysis: fundamentals and applications to removal of various types of aqueous pollutants. Catal. Today 53: 115.

DOI: 10.1016/s0920-5861(99)00107-8

Google Scholar

[13] Julio, C., Morales Mejia., Lucero Angeles., Rafael Almanza., (2014) . Synthesis and Characterization of TiO2 Porous Films for Heterogeneous Photocatalysis. Computational Water, Energy, and Environmental Engineering. 3: 4-5.

Google Scholar

[14] Andreozzi, R., Caprio, V., Insola, A., Longo, G., Tufano, V. (2000). Photocatalytic oxidation of 4-nitrophenol in aqueous TiO2 slurries: an experimental validation of literature kinetic models . J Chem Technol Biotechnol. 75-131.

DOI: 10.1002/(sici)1097-4660(200002)75:2<131::aid-jctb191>3.0.co;2-f

Google Scholar

[15] Fresno, F., Guillard, C., Coronado, J., Chovelon, J,M., Tudela, D., Soria, J., Herrmann, J., (2005).

Google Scholar

[16] Deepika, M., Neeru, C., Rajat, A., Suresh,C. (2003). Photochemical degradation of chlorobenzene by photo-fenton's reagent. Int.J. Chem. Sci. 1(1): 41-48.

Google Scholar

[17] C, Su., B, Y, Hong., C, M, Tseng., (2004) . Sol–gel preparation and photocatalysis of titanium Dioxide. Catal. Today. 96: 119-126.

DOI: 10.1016/j.cattod.2004.06.132

Google Scholar

[18] Chen, J., Wang, D., Zhu, M., Gao, C., (2007). Photocatalytic degradation of dimethoate using nanosized TiO2 powder. Desalination. 207: 87-94.

DOI: 10.1016/j.desal.2006.06.012

Google Scholar

[19] Navarro, S., Fenoll, J., Vela, N., Ruiz, E., Navarro, G. (2009). Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. Journal of Hazardous Materials. 1303-1310.

DOI: 10.1016/j.jhazmat.2009.07.137

Google Scholar

[20] Verma,A., poonam., Dixit, D. (2012). Photocatalytic degradability of insecticide chlorpyrifos over uv irradiated titanium dioxide in aqueous phase. International journal of environmental sciences. 3: 2.

Google Scholar

[21] Ioannis, K, K., Theophanis, M, S., Sakkas, V, A., Albanis, T, A. (2001). Photocatalytic Degradation of Selected s-Triazine Herbicides and Organophosphorus Insecticides over Aqueous TiO2 Suspensions. Environ. Sci. Technol. 35: 398-405.

DOI: 10.1021/es001271c

Google Scholar

[22] Verma A., Monika S., Amrit, P, T. (2013). Titanium dioxide mediated photocatalytic degradation of malathionin aqueous phase. Indian journal of Chemical technology. 46-51.

Google Scholar

[23] Reddy, A, K., Reddy, P, V, L., Sharma, V, M., Srinivas, B., Kumari, V, D., Subrahmanyam, M. (2010). Photocatalytic Degradation of Isoproturon Pesticide on C, N and S Doped TiO2. J. Water Resource and Protection. 235-244.

DOI: 10.4236/jwarp.2010.23027

Google Scholar

[24] Suja, P., Devipriya., Suguna, Y. (2010). Photocatalytic degradation of phenol in water using TiO2 and ZnO. Journal of Environmental Biology. 247-249.

Google Scholar

[25] Amin, M, B., Kawther, A, O., Mohamed, M, M. (2012). Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. Sci. 7 : 6654 – 6665.

DOI: 10.1016/s1452-3981(23)15737-3

Google Scholar

[26] Agarwal, V., Das, S. (2010). Degradation of monocrotophos pesticides using the advanced oxidation method. Journal of Environment and Waste Management. 1(1): 2-10.

Google Scholar

[27] Aparna,R., Munusamy,S. ( 2013). Photocatalytic effect of TiO2 and the effect of Dopants on degradation of brilliant green. Sustainable Chemical Processes. 1: 4.

DOI: 10.1186/2043-7129-1-4

Google Scholar

[28] Ali,R., Hassan,S. (2008). Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst. The Malaysian Journal of Analytical Sciences. 12: 1.

Google Scholar

[29] Albert, T., Bini, D., Didier, R., Drissa, B., Patrick, A. (2008). Photocatalytic degradation of the diuron pecticide. Environ Chem Lett. 6: 163-167.

Google Scholar

[30] Anju, S,G., Hariprasad, N., Yesodharan, E, P., Yesodharan, S. (2013).

Google Scholar

[31] Ji, P., Zhang, J., Chen, F., Anpo, M., ( 2009). Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Applied Catalysis B: Environmental. 85: 148-154.

DOI: 10.1016/j.apcatb.2008.07.004

Google Scholar

[32] Qamar, M., Muneer, M., Bahnemann, D., (2006). Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Journal of Environmental Management 80: 99 -106.

DOI: 10.1016/j.jenvman.2005.09.002

Google Scholar

[33] Singh, R., Chaudhary, R., Thakur, R, S. (2011). Performance of advanced photocatalytic detoxification of municipal wastewater under solar radiation - A mini review. International journal of energy and environment. 337-350.

Google Scholar

[34] Shifu, C., Gengyu, C., ( 2005). Photocatalytic degradation of pesticides using floating photocatalyst TiO2/SiO2 beads by sunlight. Solar Energy 79: 1-9.

DOI: 10.1016/j.solener.2004.10.006

Google Scholar

[35] Liu, W., Chen, Shifu., Zhao, W., Zhang, S., (2009). Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide. Desalination.

DOI: 10.1016/j.desal.2008.12.058

Google Scholar

[36] Kaneco, S., Itoh, K., Katsumata, H., Suzuki, T., Ohta, K., (2009). Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: kinetics and mineralization. Chemical Engineering Journal. 148: 50-56.

DOI: 10.1016/j.cej.2008.07.029

Google Scholar

[37] Sharma, M, V,P., Sadanandam, G., Ratnamala, A., Kumari, V., Subrahmanyam, M., (2009). An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. Journal of Hazardous Materials 171: 626-633.

DOI: 10.1016/j.jhazmat.2009.06.040

Google Scholar

[38] Shafaei, A., Nikaza, M., Arami, M., (2010). Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study. Desalination, 252: 8-16.

DOI: 10.1016/j.desal.2009.11.008

Google Scholar

[39] Muneer, M., Qamar, M., Saquib, M., Bahnemann, D., (2005). Heterogeneous photocatalysed reaction of three selected pesticide derivatives, propham, propachlor and tebuthiuron in aqueous suspension of titanium dioxide. Chemosphere. 61: 457-468.

DOI: 10.1016/j.chemosphere.2005.03.006

Google Scholar

[40] M, U˘, gurlu., M, H, Karao˘glu., (2011).

Google Scholar

[41] Bushnaq, Z., Othman, M, Z., Roddick, F, A., (2004) . Evaluation of UVA, UVB and UVC photolysis for the removal of atrazine from polluted water. Enviro 04 Proceedings, P. Nadebaun (ed. ), Australian Water Association, Sydney.

Google Scholar

[42] Bahnemann, W., Muneer, M., Haque, M.M., (2007). Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catalysis Today. 124: 133-148.

DOI: 10.1016/j.cattod.2007.03.031

Google Scholar

[43] Pareek, V., Chong, S., Tade, M., Adesina, A., ( 2008). Light intensity distribution in heterogeneous photocatalytic reactors. Asia-Pacific Journal of Chemical Engineering. 3: 171-201.

DOI: 10.1002/apj.129

Google Scholar

[44] Gutailler, G., Valette, J.C., Guillard, C., Paisse, O., Faure, R., (2001).

Google Scholar

[45] Wong, C,C., Chu, W., (2003). The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources. Chemosphere. 50: 981-987.

DOI: 10.1016/s0045-6535(02)00640-9

Google Scholar

[46] J, Sun., X, Wang., J, Sun., R, Sun., S, Sun., L, Qiao., Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst, J. Mol.

DOI: 10.1016/j.molcata.2006.07.033

Google Scholar

[47] L, P, Gianluca., A, Bono., D, Krishnaiah., J, G, Collin., (2008). Preparation of titanium dioxide.

Google Scholar

[48] photocatalyst loaded onto activated carbon support using chemical vapor decomposition: a review paper J. Hazard. Mater. 157 : (2–3) 209–219.

Google Scholar

[49] Xie, Z,M., Chen, Z., Dai, Y,Z., (2009). Preparation of TiO2/sepiolite photocatalyst and its application to printing and dyeing wastewater treatment. Environ. Sci. Technol. 32: 123-127.

Google Scholar

[50] Chong, M.N., Vimonses, V., Lei, S., Jin, B., Chow, C., Saint, C., (2009). Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporus Mesoporus Mater. 117: 233-242.

DOI: 10.1016/j.micromeso.2008.06.039

Google Scholar

[51] Sun, D., Meng, T,T., Loong, T,H., Hwa, T,J., (2004). Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Water Sci. Technol. 49: 103-110.

DOI: 10.2166/wst.2004.0030

Google Scholar

[52] M, Silva., M, J, F, Calvetea., N, P, F, Gonc. ¸ alvesa., H, D, Burrowsa., M, Sarakhab., A, Fernandesc., M, F, Ribeiroc., M, E, Azenhaa. M, M, Pereiraa.

Google Scholar

[53] Rahman, M.A., Qamar, M., Muneer, M., Bahnemenn, D., (2006).

Google Scholar

[54] Senthilnathan, J., Philip, L., (2010). Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal.

DOI: 10.1016/j.cej.2010.04.034

Google Scholar

[55] Pardeshi, S.K., Patil, A.B., (2009). Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. Journal of Molecular Catalysis A: Chemical 308: 32-40.

DOI: 10.1016/j.molcata.2009.03.023

Google Scholar

[56] Topalov, A., Molnár-Gábor, D., Csanádi, J., (1999) Photocatalytic oxidation of the fungicide metalaxyl dissolved in water over TiO2 Water. Res. 33 : 1371.

DOI: 10.1016/s0043-1354(98)00351-0

Google Scholar

[57] Sabin, F., Turk, T., Vogler, A., (1992). Photo-oxidation of organic compound in the presence of titanium dioxide: determination of the efficiency. J. Photochem. Photobiol. A: Chem, 63: 99-106.

DOI: 10.1016/1010-6030(92)85157-p

Google Scholar