Influence of Oxygen Pressure to Photocatalytic Oxidation of Phenol on CuO/TiO2

Article Preview

Abstract:

The photocatalytic oxidation of phenol on the composite copper oxide (II) modified titania photocatalyst (CuO/TiO2) with sunlight irradiation at high oxygen pressure are studied. The photocatalyst characterized by Scanning electron microscopy (SEM), UV-Visible Diffuse Reflectance spectroscopy (UV-DRS), Surface area analysis, and X-ray diffractometry (XRD). The composite photocatalyst based on the anatase includes 3% copper oxide (II). The CuO/TiO2 photocatalytic activity was investigated of phenol oxidation with sunlight irradiation at high oxygen pressure. The photocatalytic oxidation of phenol described Langmuir-Hinshelwood equation and calculated its parameters. With the increasing, the oxygen pressure the rate of phenol photocatalytic oxidation also increases. The quantum yield of the photocatalytic phenol oxidation at high oxygen pressure on the CuO/TiO2 composite photocatalyst are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-146

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments., J. Hazard. Mater. 160 (2–3) (2008) 265–288.

DOI: 10.1016/j.jhazmat.2008.03.045

Google Scholar

[2] S. Keav, A.E. de los Monteros, J. Barbier, D. Duprez, Wet Air Oxidation of phenol over Pt and Ru catalysts supported on cerium-based oxides: Resistance to fouling and kinetic modelling, Appl. Catal. B Environ., 150 (151) (2014) 402–410.

DOI: 10.1016/j.apcatb.2013.12.028

Google Scholar

[3] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238 (5358) (1972) 37–38.

DOI: 10.1038/238037a0

Google Scholar

[4] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (1) (2000) 1–21.

Google Scholar

[5] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (46) (2011) 13211–13241.

DOI: 10.1021/jp204364a

Google Scholar

[6] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (7) (2007) 2891–2959.

DOI: 10.1021/cr0500535

Google Scholar

[7] D. Zhang, Enhancement of the photocatalytic activity of modified TiO2 nanoparticles with Zn2+. correlation between structure and properties, Russ. J. Phys. Chem. A. 86 (3) (2012) 489–494.

DOI: 10.1134/s0036024412030351

Google Scholar

[8] M.A. Barakat, R. I. Al-Hutailah, E. Qayyum, J. Rashid, J.N. Kuhn, Pt nanoparticles/TiO2 for photocatalytic degradation of phenols in wastewater, Environ. Technol. 35 (1–4) (2014) 137–144.

DOI: 10.1080/09593330.2013.820796

Google Scholar

[9] C.A. Emilio, M.I. Litter, M. Kunst, M. Bouchard, C. Colbeau-Justin, Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics, Langmuir. 22 (8) (2006) 3606–3613.

DOI: 10.1021/la051962s

Google Scholar

[10] C. -H. Chiou, R. -S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard. Mater. 149 (1) (2007) 1–7.

DOI: 10.1016/j.jhazmat.2007.03.035

Google Scholar

[11] M.S. Nahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles, Chemosphere. 65 (11) (2006) 1976–(1982).

DOI: 10.1016/j.chemosphere.2006.07.002

Google Scholar

[12] R.A. Shawabkeh, O.A. Khashman, G.I. Bisharat, Photocatalytic Degradation of Phenol using Fe-TiO2 by Different Illumination Sources, Int. J. Chem. 2 (2) (2010) 10.

DOI: 10.5539/ijc.v2n2p10

Google Scholar

[13] M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles, Appl. Catal. B Environ. 57 (1) (2005) 23–30.

DOI: 10.1016/j.apcatb.2004.10.001

Google Scholar

[14] X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol. 30 (2) (1996) 647–653.

DOI: 10.1021/es950391v

Google Scholar

[15] Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, Hydrothermal synthesis, characterization, and photocatalytic performance of silica-modified titanium dioxide nanoparticles, J. Colloid Interface Sci. 288 (1) (2005) 149–154.

DOI: 10.1016/j.jcis.2005.02.082

Google Scholar

[16] L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst, Environ. Sci. Technol. 44 (19) (2010) 7641.

DOI: 10.1021/es101711k

Google Scholar

[17] G. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO−TiO2 Nanocomposites, J. Phys. Chem. C. 112 (48) (2008) 19040–19044.

DOI: 10.1021/jp8068392

Google Scholar

[18] D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications, J. Mater. Sci. 46 (11) (2011) 3669–3686.

DOI: 10.1007/s10853-011-5378-y

Google Scholar

[19] S. Xu, A.J. Du, J. Liu, J. Ng, D.D. Sun, Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water, Int. J. Hydrogen Energy. 36 (11) (2011) 6560–6568.

DOI: 10.1016/j.ijhydene.2011.02.103

Google Scholar

[20] A.B. Isaev, G.A. Magomedova, N.A. Zakargaeva, N.K. Adamadzieva, Influence of oxygen pressure on the photocatalytic oxidation of the azo dye Chrome Yellow with TiO2 as the catalyst, Kinet. Catal. 52 (2) (2011) 197–201.

DOI: 10.1134/s002315841102008x

Google Scholar

[21] A.B. Isaev, Z.M. Aliev, N.K. Adamadzieva, N.A. Alieva, G.A. Magomedova, The photocatalytic oxidation of azo dyes on Fe2O3 nanoparticles under oxygen pressure, Nanotechnologies Russ., 4 (7–8) (2009) 475–479.

DOI: 10.1134/s1995078009070088

Google Scholar

[22] J. Bandara, C.P.K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated TiO2 catalyst for photo-catalytic hydrogen production from H2O, Photochem. Photobiol. Sci. 4 (11) (2005) 857–861.

DOI: 10.1039/b507816d

Google Scholar

[23] T. -H. Lim, S. -M. Jeong, S. -D. Kim, J. Gyenis, Degradation Characteristics of NO by Photocatalysis with TiO2 and CuO/TiO2, React. Kinet. Catal. Lett. 71 (2) (2000) 223–229.

Google Scholar

[24] M. Aceituno, C. D. Stalikas, L. Lunar, S. Rubio, D. Pérez-Bendito, H2O2/TiO2 photocatalytic oxidation of metol. Identification of intermediates and reaction pathways, Water Res. 36 (14) (2002) 3582–3592.

DOI: 10.1016/s0043-1354(02)00061-1

Google Scholar

[25] C.C. Wong, W. Chu, The Hydrogen Peroxide-Assisted Photocatalytic Degradation of Alachlor in TiO2 Suspensions, Environ. Sci. Technol. 37 (10) (2003) 2310–2316.

DOI: 10.1021/es020898n

Google Scholar

[26] M. Bertelli, E. Selli, Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol, J. Hazard. Mater. 138 (1) (2006) 46–52.

DOI: 10.1016/j.jhazmat.2006.05.030

Google Scholar

[27] C. Karunakaran, S. Senthilvelan, Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline, Electrochem. commun. 8 (1) (2006) 95–101.

DOI: 10.1016/j.elecom.2005.10.034

Google Scholar

[28] F.G. Gasanova, F.F. Orudzhev, Z.M. Aliev, A.B. Isaev, Influence of oxygen pressure on the photochemical oxidation of phenol, Russ. J. Phys. Chem. A. 86 (3) (2012) 495–497.

DOI: 10.1134/s0036024412030119

Google Scholar

[29] A.B. Isaev, G.A. Magomedova, Z.M. Aliev, Sensitized photocatalytic oxidation of chrome brown on TiO2, Russ. J. Phys. Chem. A. 85 (11) (2011) 2041–(2043).

DOI: 10.1134/s0036024411110124

Google Scholar