Synthesis and Characterization of Tantalum Based Photocatalysts and Application for Methylene Blue Degradation

Article Preview

Abstract:

Ta2O5, Ta2O5–SrO and Ta2O5–TiO2 photocatalysts were prepared by hydrothermal method and characterized using X-ray diffraction (XRD), Ultraviolet-visible Diffuse Reflectance spectroscopy (UV-Vis DRS) and Thermogravimetry (TGA). In synthesized series of TiO2-Ta2O5 catalysts, formation of anatase TiO2, hexagonal Ta2O5 and titanium tantalates were observed. For Ta2O5-SrO (Ta:Sr= 1:1) formation of mixed oxide and crystallinity was observed at calcinations temperature at 1100 °C (5hr). These synthesized catalysts were used for degradation study of methylene blue. The result demonstrated that the photocatalytic activity of the mixed oxides [Ta2O5-TiO2(1:1), Ta2O5-TiO2(2:1), Ta2O5-TiO2(1:2), Ta2O5-SrO (Ta:Sr= 1:1)] was higher than that of Ta2O5 alone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-155

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review, Appl. Catal. A: Gen. 359 (2009) 25-40.

DOI: 10.1016/j.apcata.2009.02.043

Google Scholar

[2] Ş. Neaţu, J.A. Maciá-Agulló, H. Garcia, Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts, Inter. J. Mol. Sci. 15 (2014) 5246-5262.

DOI: 10.3390/ijms15045246

Google Scholar

[3] A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, SrZrO3 powders: Alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting, Fuel 158 (2015) 66-71.

DOI: 10.1016/j.fuel.2015.05.014

Google Scholar

[4] L. Gomathi Devi, R. Kavitha, Review on modified N–TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms, RSC Advances 4 (2014) 28265-28299.

DOI: 10.1039/c4ra03291h

Google Scholar

[5] C. Wang, S. Gao, X. Zhou, Q. Wu, C. Jiao, Z. Wang, Research progress of plasmonic photocatalyst in organic synthesis, Chin. J. Org. Chem. 34 (2014) 2217-2223.

DOI: 10.6023/cjoc201405021

Google Scholar

[6] C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis, Chem. Reviews 113 (2013) 5322-5363.

DOI: 10.1021/cr300503r

Google Scholar

[7] D.A. Keane, K.G. McGuigan, P.F. Ibáñez, M.I. Polo-López, J.A. Byrne, P.S.M. Dunlop, K. O'Shea, D.D. Dionysiou, S.C. Pillai, Solar photocatalysis for water disinfection: materials and reactor design, Catal. Sci. Technol. 4 (2014) 1211-1226.

DOI: 10.1039/c4cy00006d

Google Scholar

[8] G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response, Chem. Mater. 19 (2007) 4530-4537.

DOI: 10.1021/cm071244m

Google Scholar

[9] R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide, J. Am. Chem. Soc. 130 (2008) 7780-7781.

DOI: 10.1021/ja800835q

Google Scholar

[10] O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels, Nano Lett. 9 (2009) 731-737.

DOI: 10.1021/nl803258p

Google Scholar

[11] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278.

DOI: 10.1039/b800489g

Google Scholar

[12] G. Liu, L. Wang, H. Yang, H. Cheng, G. Lu, Titania-based photocatalysts—crystal growth, doping and heterostructuring, J. Mater. Chem. 20 (2010) 831-843.

DOI: 10.1039/b909930a

Google Scholar

[13] X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. Wang, Y. He, Y. Zheng, Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties, Appl. Catal. B: Environ. 168-169 (2015) 408-415.

DOI: 10.1016/j.apcatb.2015.01.001

Google Scholar

[14] Q. Xu, J. Feng, L. Li, Q. Xiao, J. Wang, Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst, J. Alloys and Compounds, 641 (2015) 110-118.

DOI: 10.1016/j.jallcom.2015.04.076

Google Scholar

[15] X. Zhao, J. Youa, Y. Xie, H. Cao, X. Liu, Nanoporous SiO2/TiO2 composite coating for orthopedic application, Materials Lett. 152 (2015) 53-56.

DOI: 10.1016/j.matlet.2015.03.067

Google Scholar

[16] M. Tian, J. Wen, D. MacDonald, R.M. Asmussen, A. Chen, A novel approach for lignin modification and degradation, Electrochem. Commun. 12 (2010) 527-530.

DOI: 10.1016/j.elecom.2010.01.035

Google Scholar

[17] L. Xu, J. Guan, L. Gao, Z. Sun, Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution, Catal. Commun. 12 (2011) 548-552.

DOI: 10.1016/j.catcom.2010.11.027

Google Scholar

[18] D. Wang, Z. Zou, J. Ye, Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 Composite Oxide Semiconductors, Chem. Mater. 17 (2005) 3255-3261.

DOI: 10.1002/chin.200538027

Google Scholar

[19] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system, Nature Mater. 5 (2006) 782-786.

DOI: 10.1038/nmat1734

Google Scholar

[20] G. Li, D. Zhang, J.C. Yu, Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts, Phys. Chem. Chem. Phys. 11 (2009) 3775-3782.

DOI: 10.1039/b819167k

Google Scholar

[21] M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Baton Rouge, FL, (1988).

Google Scholar