[1]
N. Tsuchiya, K. Kuwabara, A. Hidaka, K. Oda, K. Katayama, Reaction kinetics of dye decomposition processes monitored inside a photocatalytic microreactor, Phys. Chem. Chem. Phys. 14 (2012) 4734–4741.
DOI: 10.1039/c2cp23979e
Google Scholar
[2]
M. E. Leblebici, G. D. Stefanidis, T. V. Gerven, Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem. Eng. Process. 97 (2015) 106–111.
DOI: 10.1016/j.cep.2015.09.009
Google Scholar
[3]
Priyanka, V. C. Srivastava, Photocatalytic Oxidation of Dye Bearing Wastewater by Iron Doped Zinc Oxide, Ind. Eng. Chem. Res. 52 (2013) 17790−17799.
DOI: 10.1021/ie401973r
Google Scholar
[4]
P. R. Potti, V. C. Srivastava, Comparative Studies on Structural, Optical, and Textural Properties of Combustion Derived ZnO Prepared Using Various Fuels and Their Photocatalytic Activity, Ind. Eng. Chem. Res. 51 (2012) 7948−7956.
DOI: 10.1021/ie300478y
Google Scholar
[5]
J. Parmar, S. Jang, L. Soler, D. Kim, S. Sánchez, Nano-photocatalysts in microfluidics, energy conversion and environmental applications, Lab Chip 15 (2015) 2352-2356.
DOI: 10.1039/c5lc90047f
Google Scholar
[6]
S. S. Ahsan, A. Gumus, D. Erickson, Redox mediated photocatalytic water-splitting in optofluidic microreactors, Lab Chip 13 (2013) 409–414.
DOI: 10.1039/c2lc41129f
Google Scholar
[7]
Z. Meng, X. Zhang, J. Qin, A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst, Nanoscale 5 (2013) 4687–4690.
DOI: 10.1039/c3nr00775h
Google Scholar
[8]
L. Schneegass, R. Bräutigam, J. M. Köhler, Miniaturized flow-through PCR with different template types in a silicon chip thermocycler, Lab Chip 1 (2001) 42–49.
DOI: 10.1039/b103846j
Google Scholar
[9]
Y. Kikutani, T. Horiuchi, K. Uchiyama, H. Hisamoto, M. Tokeshi, T. Kitamori, Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis, Lab Chip 2 (2002) 188–192.
DOI: 10.1039/b208382p
Google Scholar
[10]
Y. Cheng, K. Sugioka, K. Midorikawa, Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for lab-on-a-chip applications, Appl. Surf. Sci. 248 (2005) 172–176.
DOI: 10.1016/j.apsusc.2005.03.078
Google Scholar
[11]
O. Hofmann, P. Niedermann, A. Manz, Modular approach to fabrication of three-dimensional microchannel systems in PDMS application to sheath flow microchips, Lab Chip 1 (2001) 108–114.
DOI: 10.1039/b105110p
Google Scholar
[12]
M. Svedberg, M. Veszelei, J. Axelsson, M. Vangbo, F. Nikolajeff, Poly (dimethylsiloxane) microchip: microchannel with integrated open electrospray tip, Lab Chip 4 (2004) 322–327.
DOI: 10.1039/b402490g
Google Scholar
[13]
L. H. Hung, R. Lin , A. P. Lee, Rapid microfabrication of solvent-resistant biocompatible microfluidic devices, Lab Chip 8 (2008) 983–987.
DOI: 10.1039/b717710k
Google Scholar
[14]
M. Natali, S. Begolo, T. Carofiglioc, G. Mistura, Rapid prototyping of multilayer thiolene microfluidic chips by photopolymerization and transfer lamination, Lab Chip 8 (2008) 492–494.
DOI: 10.1039/b716594c
Google Scholar
[15]
H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, Optoluidic variable aperture, Opt. Lett. 33 (2008) 548–550.
Google Scholar
[16]
C. L. Bliss, J. N. McMullin, C. J. Backhouse, Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis, Lab Chip 7 (2007) 1280–1287.
DOI: 10.1039/b708485d
Google Scholar
[17]
A. Muck, J. Wang, M. Jacobs, Fabrication of poly (methyl methacrylate) microfluidic chips by atmospheric molding, Anal. Chem. 76 (2004) 2290–2297.
DOI: 10.1021/ac035030+
Google Scholar
[18]
N. Bao, Q. Zhang, J-J. Xu, Fabrication of poly (dimethylsiloxane) microfluidic system based on mastersdirectly printed with an office laser printer, J. Chromatogr. A 1089 (2005) 270–275.
DOI: 10.1016/j.chroma.2005.07.001
Google Scholar
[19]
SLR. Barker, M. J. Tarlov, H. Canavan, Plastic microfluidic devices modified with polyelectrolyte multilayers, Anal. Chem. 72 (2000) 4899–4903.
DOI: 10.1021/ac000548o
Google Scholar
[20]
X. Bai, C. Roussel, H. Jensen, Polyelectrolyte-modified short microchannel for cation separation, Electrophoresis 25 (2004) 931–935.
DOI: 10.1002/elps.200305771
Google Scholar
[21]
P. Pal, K. Sato, Various shapes of silicon freestanding microfluidic channels and microstructures in one step lithography, J. Micromech. Microeng. 19 (2009) 055003.
DOI: 10.1088/0960-1317/19/5/055003
Google Scholar
[22]
S-J. Qin, W. J. Li, Micromachining of complex channel systems in 3D quartz substrates using Q-switched Nd: YAG laser, Appl. Phys. A Mater. 74 (2002) 773–777.
DOI: 10.1007/s003390100943
Google Scholar
[23]
S. Nakashima, K. Sugioka, K. Midorikawa, Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond laser ablation, Appl. Surf. Sci. 255 (2009) 9770–9774.
DOI: 10.1016/j.apsusc.2009.04.159
Google Scholar
[24]
M. Castano-Alvarez, M. T. Fernandez-Abedul, A. Costa Garcia, Poly (methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection, Electrophoresis 26 (2005) 3160–3168.
DOI: 10.1002/elps.200500148
Google Scholar
[25]
P. Mela, A. Van den Berg, Y. Fintschenko, EB. Cummings, BA. Simmons, BJ. Kirby, The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices, Electrophoresis 26 (2005).
DOI: 10.1002/elps.200410153
Google Scholar
[26]
J. M. Fernandez-Pradas, D. Serrano, P. Serra, Laser fabricated microchannels inside photostructurable glassceramic, Appl. Surf . Sci. 255 (2009) 5499–5502.
DOI: 10.1016/j.apsusc.2008.08.099
Google Scholar
[27]
M. J. Madou, Fundamentals of microfabrication. 2nd ed. Boca Raton, FL: CRC Press, (2002).
Google Scholar
[28]
L. Xu, C. Srinivasakannan, J. Peng, M. Yand, D. Zhang, L. Zhang, Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite, Appl. Surf. Sci. 331 (2015) 449–454.
DOI: 10.1016/j.apsusc.2015.01.109
Google Scholar
[29]
P. Yao, G. J. Schneider, D. W. Prather, Three dimensional lithographical fabrication of microchannels, J. Microelectromech. S 14 (2005) 799–805.
DOI: 10.1109/jmems.2005.845403
Google Scholar
[30]
M. Abdelgawad, C. Wu, W. Y. Chien, A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS), Lab Chip 11 (2011) 545–551.
DOI: 10.1039/c0lc00093k
Google Scholar
[31]
J. C. McDonald, D. C. Duffy, J. R. Anderson, Fabrication of microfluidic systems in poly (dimethylsiloxane), Electrophoresis 21 (2000) 27–40.
DOI: 10.1002/(sici)1522-2683(20000101)21:1<27::aid-elps27>3.0.co;2-c
Google Scholar
[32]
H. Becker, L. E. Locascio, Polymer microfluidic devices. Talanta 56 (2002) 267–287.
Google Scholar
[33]
Y. Xia, G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 (1998) 153–184.
DOI: 10.1146/annurev.matsci.28.1.153
Google Scholar
[34]
K. Ueno, F. Kitagawa, H-B. Kim, Fabrication and characteristic responses of integrated microelectrodes in polymer channel chip, Chem. Lett. 29 (2000) 858–859.
DOI: 10.1246/cl.2000.858
Google Scholar
[35]
I. Brodie, J. J. Murray, The physics of microfabrication. New York: Plenum Press, (1982).
Google Scholar
[36]
E. Delamarche, A. Bernard, H. Schmid, Microfluidic networks for chemical patterning of substrates: design and application to bioassays, J. Am. Chem. Soc. 120 (1998) 500–508.
DOI: 10.1021/ja973071f
Google Scholar
[37]
J. Brugger, R. A. Buser, N. F. D. Rooij, Silicon cantilevers and tips for scanning force microscopy, Sensor. Actuat. A Phys. 34 (1992) 193–200.
DOI: 10.1016/0924-4247(92)85002-j
Google Scholar
[38]
S.W. Kang, J. S. Chen, J. Y. Hung. Surface roughness of (110) orientation silicon based micro heat exchanger channel., Int. J. Mach. Tool Manu. 38 (1998) 663-668.
DOI: 10.1016/s0890-6955(97)00115-6
Google Scholar
[39]
T. Kikuchi, Y. Wachi, M. Sakairi, Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution, Microelectron. Eng. 111 (2013) 14–20.
DOI: 10.1016/j.mee.2013.05.007
Google Scholar
[40]
E. Belloy, S. Thurre, E. Walckiers, The introduction of powder blasting for sensors and microsystem applications, Sensor Actuat. A Phys. 84 (2000) 330–337.
DOI: 10.1016/s0924-4247(00)00390-3
Google Scholar
[41]
J-H. Park, N-E. Lee, J. Lee, Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas, Microelectron Eng. 8 (2005) 119–128.
DOI: 10.1016/j.mee.2005.07.006
Google Scholar
[42]
V. Maselli, R. Osellame, G. Cerullo, Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching, Appl. Phys. Lett. 88 (2006) 191107. 1–191107. 3.
DOI: 10.1063/1.2203335
Google Scholar
[43]
Y. Qin, Micro-manufacturing engineering and technology. 1st ed. Oxford: Elsevier Inc., (2010).
Google Scholar
[44]
C. G. Khan Malek, Laser processing for bio-microfluidic applications (part II), Anal. Bioanal. Chem. 385 (2006) 1362–1369.
DOI: 10.1007/s00216-006-0517-z
Google Scholar
[45]
M. Hakamada, Y. Asao, T. Kuromura, Y. Chen, H. Kusuda, M. Mabuchi, Fabrication of copper microchannels by the spacer method, Scripta Materialia. 56 (2007) 781–783.
DOI: 10.1016/j.scriptamat.2007.01.014
Google Scholar
[46]
M. K. S. Verma, A. Majumder, A. Ghatak, Embedded Template-Assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive, Langmuir 22 (2006) 10291–10295.
DOI: 10.1021/la062516n
Google Scholar
[47]
R. A. Maurya, K. -I. Min, D. -P. Kim, Continuous flow synthesis of toxic ethyl diazoacetate for utilization in an integrated microfluidic system, Green Chem. 16 (2014) 116–120.
DOI: 10.1039/c3gc41226a
Google Scholar
[48]
S. Teekateerawej, J. Nishino, Y. Nosaka, Design and evaluation of photocatalytic micro-channel reactors using TiO2-coated porous ceramics, J. Photochem. Photobio. A Chem. 179 (2006) 263–268.
DOI: 10.1016/j.jphotochem.2005.08.024
Google Scholar
[49]
N. Wang, N. Y. Chan, C. H. To, F. Tan, X. Zhang, Photocatalytic microreactors for water purification: Selective control of oxidation pathways, Nano/Micro Engineered and Molecular Systems (NEMS), 8th IEEE International Conference, 2013, 368-371.
DOI: 10.1109/nems.2013.6559753
Google Scholar
[50]
Z. He, Y. Li, Q. Zhang, H. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis, Appl. Catal. B 93 (2010) 376–382.
DOI: 10.1016/j.apcatb.2009.10.011
Google Scholar
[51]
C. Shen, Y. J. Wang, J. H. Xu, G. S. Luo, Glass capillaries with TiO2 supported on inner wall as microchannel reactors, Chem. Eng. J. 277 (2015) 48–55.
DOI: 10.1016/j.cej.2015.04.013
Google Scholar
[52]
K. Katayama, Y. Takeda, K. Kuwabara, S. Kuwahara, A novel photocatalytic microreactor bundle that does not require an electric power source, Chem. Commun. 48 (2012) 7368–7370.
DOI: 10.1039/c2cc33525e
Google Scholar
[53]
G. Charles, T. Roques-Carmes, N. Becheikh, L. Falk, J-M Commenge, S. Corbel, Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion, J. Photochem. Photobio. A Chem. 223 (2011).
DOI: 10.1016/j.jphotochem.2011.08.019
Google Scholar
[54]
S. Corbel, N. Becheikh, T. Roques-Carmes, O. Zahraa, Mass transfer measurements and modeling in a microchannel photocatalytic reactor, Chem. Eng. Res. Des. 92 (2014) 657–662.
DOI: 10.1016/j.cherd.2013.10.011
Google Scholar
[55]
M. Krivec, K. Zagar, L. Suhadolnik, M. Čeh, G. Dražić, Highly Efficient TiO2‑Based Microreactor for Photocatalytic Applications, ACS Appl. Mater. Interfaces 5 (2013) 9088−9094.
DOI: 10.1021/am402389t
Google Scholar
[56]
R. Gorges, S. Meyer, G. Kreisel, Photocatalysis in microreactors, J. Photochem. Photobiol. A Chem. 167 (2004) 95–99.
Google Scholar
[57]
T-H. Yoon, L-Y. Hong, D-P. Kima, Photocatalytic reaction using novel inorganic polymer derived packed bed microreactor with modified TiO2 microbeads, Chem. Eng. J. 167 (2011) 666–670.
DOI: 10.1016/j.cej.2010.08.090
Google Scholar
[58]
Q. Zhang, Q. Zhang, H. Wang, Y. Li, A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol, J. Hazard. Mater. 254–255 (2013) 318– 324.
DOI: 10.1016/j.jhazmat.2013.04.012
Google Scholar
[59]
H. C. Aran, D. Salamon, T. Rijnaarts, G. Mul, M. Wessling, R. G. H. Lammertink, Porous Photocatalytic Membrane Microreactor (P2M2): A new reactor concept for photochemistry, J. Photochem. Photobiol. A Chem. 225 (2011) 36-41.
DOI: 10.1016/j.jphotochem.2011.09.022
Google Scholar
[60]
A. Visan, D. Rafieian, W. Ogieglo, R. G. H. Lammertink, Modeling intrinsic kinetics in immobilized photocatalytic microreactors, Appl. Catal. B 150– 151 (2014) 93–100.
DOI: 10.1016/j.apcatb.2013.12.003
Google Scholar
[61]
H. Eskandarloo, A. Badiei, M. A. Behnajady, G. M. Ziarani, UV-LEDs assisted preparation of silver deposited TiO2 catalyst bed inside microchannels as a high efficiency microphotoreactor for cleaning polluted water, Chem. Eng. J. 270 (2015).
DOI: 10.1016/j.cej.2015.01.117
Google Scholar
[62]
R. Chen, L. Li, X. Zhu, H. Wang, Q. Liao, Mu-X. Zhang, Highly-durable optofluidic microreactor for photocatalytic water splitting, Energy 83 (2015) 797-804.
DOI: 10.1016/j.energy.2015.02.097
Google Scholar
[63]
L. Li, R. Chen, Q. Liao, X. Zhu, G. Wang, D. Wang, High surface area optofluidic microreactor for redox mediated photocatalytic water splitting, Int. J. Hydrogen Energy 39 (2014) 19270-19276.
DOI: 10.1016/j.ijhydene.2014.05.098
Google Scholar
[64]
K. Shimaoka, S. Kuwahara, M. Yamashita, K. Katayama, Study on photocatalytic organic reactions using photocatalytic microreactors, Anal Sci. 30 (2014) 619-621.
DOI: 10.2116/analsci.30.619
Google Scholar
[65]
Y. Matsushita, N. Ohba, T. Suzuki, T. Ichimura, N-Alkylation of amines by photocatalytic reaction in a microreaction system, Catal. Today 132 (2008) 153–158.
DOI: 10.1016/j.cattod.2007.12.078
Google Scholar
[66]
Y. Matsushita, N. Ohbab, S. Kumadab, K. Sakeda, T. Suzuki, T. Ichimura, Photocatalytic reactions in microreactors, Chem. Eng. J. 135S (2008) S303–S308.
DOI: 10.1016/j.cej.2007.07.045
Google Scholar
[67]
D. G. Shchukin, E. Ustinovich, D. V. Sviridov, Y. M. Lvov and G. B. Sukhorukov, Photocatalytic microreactors based on TiO2-modified polyelectrolyte multilayer capsules, Photochem. Photobiol. Sci. 2 (2003) 975-977.
DOI: 10.1039/b306197c
Google Scholar