Recent Advances in Fabrication of Photocatalytic Micro-Reactor

Article Preview

Abstract:

Microfluidic technology has been increasingly applied in field of photo catalytic reactor because of the large surface to volume ratio, shorter diffusion distance of the reactant solution, higher mixing efficiency and lower cost. This article reviews the detail progress in fabrication of micro-reactor for degradation of dye in waste water. Importantly, dye degradation required uniform UV light exposure which could be resolved by carrying out degradation in a micro-reactor. This paper discussed several of potential and commercial photocatalytic micro-reactor fabrication and configurations, in particular, the polydimethyl siloxane (PDMS) photocatalytic reactors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-167

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Tsuchiya, K. Kuwabara, A. Hidaka, K. Oda, K. Katayama, Reaction kinetics of dye decomposition processes monitored inside a photocatalytic microreactor, Phys. Chem. Chem. Phys. 14 (2012) 4734–4741.

DOI: 10.1039/c2cp23979e

Google Scholar

[2] M. E. Leblebici, G. D. Stefanidis, T. V. Gerven, Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem. Eng. Process. 97 (2015) 106–111.

DOI: 10.1016/j.cep.2015.09.009

Google Scholar

[3] Priyanka, V. C. Srivastava, Photocatalytic Oxidation of Dye Bearing Wastewater by Iron Doped Zinc Oxide, Ind. Eng. Chem. Res. 52 (2013) 17790−17799.

DOI: 10.1021/ie401973r

Google Scholar

[4] P. R. Potti, V. C. Srivastava, Comparative Studies on Structural, Optical, and Textural Properties of Combustion Derived ZnO Prepared Using Various Fuels and Their Photocatalytic Activity, Ind. Eng. Chem. Res. 51 (2012) 7948−7956.

DOI: 10.1021/ie300478y

Google Scholar

[5] J. Parmar, S. Jang, L. Soler, D. Kim, S. Sánchez, Nano-photocatalysts in microfluidics, energy conversion and environmental applications, Lab Chip 15 (2015) 2352-2356.

DOI: 10.1039/c5lc90047f

Google Scholar

[6] S. S. Ahsan, A. Gumus, D. Erickson, Redox mediated photocatalytic water-splitting in optofluidic microreactors, Lab Chip 13 (2013) 409–414.

DOI: 10.1039/c2lc41129f

Google Scholar

[7] Z. Meng, X. Zhang, J. Qin, A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst, Nanoscale 5 (2013) 4687–4690.

DOI: 10.1039/c3nr00775h

Google Scholar

[8] L. Schneegass, R. Bräutigam, J. M. Köhler, Miniaturized flow-through PCR with different template types in a silicon chip thermocycler, Lab Chip 1 (2001) 42–49.

DOI: 10.1039/b103846j

Google Scholar

[9] Y. Kikutani, T. Horiuchi, K. Uchiyama, H. Hisamoto, M. Tokeshi, T. Kitamori, Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis, Lab Chip 2 (2002) 188–192.

DOI: 10.1039/b208382p

Google Scholar

[10] Y. Cheng, K. Sugioka, K. Midorikawa, Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for lab-on-a-chip applications, Appl. Surf. Sci. 248 (2005) 172–176.

DOI: 10.1016/j.apsusc.2005.03.078

Google Scholar

[11] O. Hofmann, P. Niedermann, A. Manz, Modular approach to fabrication of three-dimensional microchannel systems in PDMS application to sheath flow microchips, Lab Chip 1 (2001) 108–114.

DOI: 10.1039/b105110p

Google Scholar

[12] M. Svedberg, M. Veszelei, J. Axelsson, M. Vangbo, F. Nikolajeff, Poly (dimethylsiloxane) microchip: microchannel with integrated open electrospray tip, Lab Chip 4 (2004) 322–327.

DOI: 10.1039/b402490g

Google Scholar

[13] L. H. Hung, R. Lin , A. P. Lee, Rapid microfabrication of solvent-resistant biocompatible microfluidic devices, Lab Chip 8 (2008) 983–987.

DOI: 10.1039/b717710k

Google Scholar

[14] M. Natali, S. Begolo, T. Carofiglioc, G. Mistura, Rapid prototyping of multilayer thiolene microfluidic chips by photopolymerization and transfer lamination, Lab Chip 8 (2008) 492–494.

DOI: 10.1039/b716594c

Google Scholar

[15] H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, Optoluidic variable aperture, Opt. Lett. 33 (2008) 548–550.

Google Scholar

[16] C. L. Bliss, J. N. McMullin, C. J. Backhouse, Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis, Lab Chip 7 (2007) 1280–1287.

DOI: 10.1039/b708485d

Google Scholar

[17] A. Muck, J. Wang, M. Jacobs, Fabrication of poly (methyl methacrylate) microfluidic chips by atmospheric molding, Anal. Chem. 76 (2004) 2290–2297.

DOI: 10.1021/ac035030+

Google Scholar

[18] N. Bao, Q. Zhang, J-J. Xu, Fabrication of poly (dimethylsiloxane) microfluidic system based on mastersdirectly printed with an office laser printer, J. Chromatogr. A 1089 (2005) 270–275.

DOI: 10.1016/j.chroma.2005.07.001

Google Scholar

[19] SLR. Barker, M. J. Tarlov, H. Canavan, Plastic microfluidic devices modified with polyelectrolyte multilayers, Anal. Chem. 72 (2000) 4899–4903.

DOI: 10.1021/ac000548o

Google Scholar

[20] X. Bai, C. Roussel, H. Jensen, Polyelectrolyte-modified short microchannel for cation separation, Electrophoresis 25 (2004) 931–935.

DOI: 10.1002/elps.200305771

Google Scholar

[21] P. Pal, K. Sato, Various shapes of silicon freestanding microfluidic channels and microstructures in one step lithography, J. Micromech. Microeng. 19 (2009) 055003.

DOI: 10.1088/0960-1317/19/5/055003

Google Scholar

[22] S-J. Qin, W. J. Li, Micromachining of complex channel systems in 3D quartz substrates using Q-switched Nd: YAG laser, Appl. Phys. A Mater. 74 (2002) 773–777.

DOI: 10.1007/s003390100943

Google Scholar

[23] S. Nakashima, K. Sugioka, K. Midorikawa, Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond laser ablation, Appl. Surf. Sci. 255 (2009) 9770–9774.

DOI: 10.1016/j.apsusc.2009.04.159

Google Scholar

[24] M. Castano-Alvarez, M. T. Fernandez-Abedul, A. Costa Garcia, Poly (methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection, Electrophoresis 26 (2005) 3160–3168.

DOI: 10.1002/elps.200500148

Google Scholar

[25] P. Mela, A. Van den Berg, Y. Fintschenko, EB. Cummings, BA. Simmons, BJ. Kirby, The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices, Electrophoresis 26 (2005).

DOI: 10.1002/elps.200410153

Google Scholar

[26] J. M. Fernandez-Pradas, D. Serrano, P. Serra, Laser fabricated microchannels inside photostructurable glassceramic, Appl. Surf . Sci. 255 (2009) 5499–5502.

DOI: 10.1016/j.apsusc.2008.08.099

Google Scholar

[27] M. J. Madou, Fundamentals of microfabrication. 2nd ed. Boca Raton, FL: CRC Press, (2002).

Google Scholar

[28] L. Xu, C. Srinivasakannan, J. Peng, M. Yand, D. Zhang, L. Zhang, Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite, Appl. Surf. Sci. 331 (2015) 449–454.

DOI: 10.1016/j.apsusc.2015.01.109

Google Scholar

[29] P. Yao, G. J. Schneider, D. W. Prather, Three dimensional lithographical fabrication of microchannels, J. Microelectromech. S 14 (2005) 799–805.

DOI: 10.1109/jmems.2005.845403

Google Scholar

[30] M. Abdelgawad, C. Wu, W. Y. Chien, A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS), Lab Chip 11 (2011) 545–551.

DOI: 10.1039/c0lc00093k

Google Scholar

[31] J. C. McDonald, D. C. Duffy, J. R. Anderson, Fabrication of microfluidic systems in poly (dimethylsiloxane), Electrophoresis 21 (2000) 27–40.

DOI: 10.1002/(sici)1522-2683(20000101)21:1<27::aid-elps27>3.0.co;2-c

Google Scholar

[32] H. Becker, L. E. Locascio, Polymer microfluidic devices. Talanta 56 (2002) 267–287.

Google Scholar

[33] Y. Xia, G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 (1998) 153–184.

DOI: 10.1146/annurev.matsci.28.1.153

Google Scholar

[34] K. Ueno, F. Kitagawa, H-B. Kim, Fabrication and characteristic responses of integrated microelectrodes in polymer channel chip, Chem. Lett. 29 (2000) 858–859.

DOI: 10.1246/cl.2000.858

Google Scholar

[35] I. Brodie, J. J. Murray, The physics of microfabrication. New York: Plenum Press, (1982).

Google Scholar

[36] E. Delamarche, A. Bernard, H. Schmid, Microfluidic networks for chemical patterning of substrates: design and application to bioassays, J. Am. Chem. Soc. 120 (1998) 500–508.

DOI: 10.1021/ja973071f

Google Scholar

[37] J. Brugger, R. A. Buser, N. F. D. Rooij, Silicon cantilevers and tips for scanning force microscopy, Sensor. Actuat. A Phys. 34 (1992) 193–200.

DOI: 10.1016/0924-4247(92)85002-j

Google Scholar

[38] S.W. Kang, J. S. Chen, J. Y. Hung. Surface roughness of (110) orientation silicon based micro heat exchanger channel., Int. J. Mach. Tool Manu. 38 (1998) 663-668.

DOI: 10.1016/s0890-6955(97)00115-6

Google Scholar

[39] T. Kikuchi, Y. Wachi, M. Sakairi, Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution, Microelectron. Eng. 111 (2013) 14–20.

DOI: 10.1016/j.mee.2013.05.007

Google Scholar

[40] E. Belloy, S. Thurre, E. Walckiers, The introduction of powder blasting for sensors and microsystem applications, Sensor Actuat. A Phys. 84 (2000) 330–337.

DOI: 10.1016/s0924-4247(00)00390-3

Google Scholar

[41] J-H. Park, N-E. Lee, J. Lee, Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas, Microelectron Eng. 8 (2005) 119–128.

DOI: 10.1016/j.mee.2005.07.006

Google Scholar

[42] V. Maselli, R. Osellame, G. Cerullo, Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching, Appl. Phys. Lett. 88 (2006) 191107. 1–191107. 3.

DOI: 10.1063/1.2203335

Google Scholar

[43] Y. Qin, Micro-manufacturing engineering and technology. 1st ed. Oxford: Elsevier Inc., (2010).

Google Scholar

[44] C. G. Khan Malek, Laser processing for bio-microfluidic applications (part II), Anal. Bioanal. Chem. 385 (2006) 1362–1369.

DOI: 10.1007/s00216-006-0517-z

Google Scholar

[45] M. Hakamada, Y. Asao, T. Kuromura, Y. Chen, H. Kusuda, M. Mabuchi, Fabrication of copper microchannels by the spacer method, Scripta Materialia. 56 (2007) 781–783.

DOI: 10.1016/j.scriptamat.2007.01.014

Google Scholar

[46] M. K. S. Verma, A. Majumder, A. Ghatak, Embedded Template-Assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive, Langmuir 22 (2006) 10291–10295.

DOI: 10.1021/la062516n

Google Scholar

[47] R. A. Maurya, K. -I. Min, D. -P. Kim, Continuous flow synthesis of toxic ethyl diazoacetate for utilization in an integrated microfluidic system, Green Chem. 16 (2014) 116–120.

DOI: 10.1039/c3gc41226a

Google Scholar

[48] S. Teekateerawej, J. Nishino, Y. Nosaka, Design and evaluation of photocatalytic micro-channel reactors using TiO2-coated porous ceramics, J. Photochem. Photobio. A Chem. 179 (2006) 263–268.

DOI: 10.1016/j.jphotochem.2005.08.024

Google Scholar

[49] N. Wang, N. Y. Chan, C. H. To, F. Tan, X. Zhang, Photocatalytic microreactors for water purification: Selective control of oxidation pathways, Nano/Micro Engineered and Molecular Systems (NEMS), 8th IEEE International Conference, 2013, 368-371.

DOI: 10.1109/nems.2013.6559753

Google Scholar

[50] Z. He, Y. Li, Q. Zhang, H. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis, Appl. Catal. B 93 (2010) 376–382.

DOI: 10.1016/j.apcatb.2009.10.011

Google Scholar

[51] C. Shen, Y. J. Wang, J. H. Xu, G. S. Luo, Glass capillaries with TiO2 supported on inner wall as microchannel reactors, Chem. Eng. J. 277 (2015) 48–55.

DOI: 10.1016/j.cej.2015.04.013

Google Scholar

[52] K. Katayama, Y. Takeda, K. Kuwabara, S. Kuwahara, A novel photocatalytic microreactor bundle that does not require an electric power source, Chem. Commun. 48 (2012) 7368–7370.

DOI: 10.1039/c2cc33525e

Google Scholar

[53] G. Charles, T. Roques-Carmes, N. Becheikh, L. Falk, J-M Commenge, S. Corbel, Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion, J. Photochem. Photobio. A Chem. 223 (2011).

DOI: 10.1016/j.jphotochem.2011.08.019

Google Scholar

[54] S. Corbel, N. Becheikh, T. Roques-Carmes, O. Zahraa, Mass transfer measurements and modeling in a microchannel photocatalytic reactor, Chem. Eng. Res. Des. 92 (2014) 657–662.

DOI: 10.1016/j.cherd.2013.10.011

Google Scholar

[55] M. Krivec, K. Zagar, L. Suhadolnik, M. Čeh, G. Dražić, Highly Efficient TiO2‑Based Microreactor for Photocatalytic Applications, ACS Appl. Mater. Interfaces 5 (2013) 9088−9094.

DOI: 10.1021/am402389t

Google Scholar

[56] R. Gorges, S. Meyer, G. Kreisel, Photocatalysis in microreactors, J. Photochem. Photobiol. A Chem. 167 (2004) 95–99.

Google Scholar

[57] T-H. Yoon, L-Y. Hong, D-P. Kima, Photocatalytic reaction using novel inorganic polymer derived packed bed microreactor with modified TiO2 microbeads, Chem. Eng. J. 167 (2011) 666–670.

DOI: 10.1016/j.cej.2010.08.090

Google Scholar

[58] Q. Zhang, Q. Zhang, H. Wang, Y. Li, A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol, J. Hazard. Mater. 254–255 (2013) 318– 324.

DOI: 10.1016/j.jhazmat.2013.04.012

Google Scholar

[59] H. C. Aran, D. Salamon, T. Rijnaarts, G. Mul, M. Wessling, R. G. H. Lammertink, Porous Photocatalytic Membrane Microreactor (P2M2): A new reactor concept for photochemistry, J. Photochem. Photobiol. A Chem. 225 (2011) 36-41.

DOI: 10.1016/j.jphotochem.2011.09.022

Google Scholar

[60] A. Visan, D. Rafieian, W. Ogieglo, R. G. H. Lammertink, Modeling intrinsic kinetics in immobilized photocatalytic microreactors, Appl. Catal. B 150– 151 (2014) 93–100.

DOI: 10.1016/j.apcatb.2013.12.003

Google Scholar

[61] H. Eskandarloo, A. Badiei, M. A. Behnajady, G. M. Ziarani, UV-LEDs assisted preparation of silver deposited TiO2 catalyst bed inside microchannels as a high efficiency microphotoreactor for cleaning polluted water, Chem. Eng. J. 270 (2015).

DOI: 10.1016/j.cej.2015.01.117

Google Scholar

[62] R. Chen, L. Li, X. Zhu, H. Wang, Q. Liao, Mu-X. Zhang, Highly-durable optofluidic microreactor for photocatalytic water splitting, Energy 83 (2015) 797-804.

DOI: 10.1016/j.energy.2015.02.097

Google Scholar

[63] L. Li, R. Chen, Q. Liao, X. Zhu, G. Wang, D. Wang, High surface area optofluidic microreactor for redox mediated photocatalytic water splitting, Int. J. Hydrogen Energy 39 (2014) 19270-19276.

DOI: 10.1016/j.ijhydene.2014.05.098

Google Scholar

[64] K. Shimaoka, S. Kuwahara, M. Yamashita, K. Katayama, Study on photocatalytic organic reactions using photocatalytic microreactors, Anal Sci. 30 (2014) 619-621.

DOI: 10.2116/analsci.30.619

Google Scholar

[65] Y. Matsushita, N. Ohba, T. Suzuki, T. Ichimura, N-Alkylation of amines by photocatalytic reaction in a microreaction system, Catal. Today 132 (2008) 153–158.

DOI: 10.1016/j.cattod.2007.12.078

Google Scholar

[66] Y. Matsushita, N. Ohbab, S. Kumadab, K. Sakeda, T. Suzuki, T. Ichimura, Photocatalytic reactions in microreactors, Chem. Eng. J. 135S (2008) S303–S308.

DOI: 10.1016/j.cej.2007.07.045

Google Scholar

[67] D. G. Shchukin, E. Ustinovich, D. V. Sviridov, Y. M. Lvov and G. B. Sukhorukov, Photocatalytic microreactors based on TiO2-modified polyelectrolyte multilayer capsules, Photochem. Photobiol. Sci. 2 (2003) 975-977.

DOI: 10.1039/b306197c

Google Scholar