Properties of Aluminum Matrix Composite (AMCs) for Electronic Packaging

Article Preview

Abstract:

In this study, the microstructure of prepared AMCs with the homogenous distribution of fly ash analyzed using optical microscope. The microstructure having refinement of structure with the decreasing of Si-needle structure and increasing the area of eutectic α-Al matrix as shown in Figure 3. Besides, as the increasing amount of fly ash incorporated, there are more petal-like dark structure existed in the microstructure. The density of the AMCs decreased as the incorporation of fly ash increased. While the hardness strength of the AMCs increased with the incorporation of fly ash. The addition of fly ash particles improved the physical and mechanical properties of the AMCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-21

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ibrahim A, Mohamed FA, Lavernia F.J. 1991. Particulate reinforced metal matrix composites- a review, Journal of Material Science, Vol. 26, pp.1137-1156.

DOI: 10.1007/bf00544448

Google Scholar

[2] Surappa M K., 1997. Microstructure evolution during solidification of DRMMCs: state of art, Journal of Material Processing Technology, Vol. 63, pp.325-333.

DOI: 10.1016/s0924-0136(96)02643-x

Google Scholar

[3] Hashim J., Looney L., Hashmi M.S.J., 2001. The enhancement of wettability of SiC particles in cast aluminium matrix composites, Journal of Material Processing Technology, Vol. 119, p.329–335.

DOI: 10.1016/s0924-0136(01)00919-0

Google Scholar

[4] Klimowicz T.F., 1994. The large scale commercialization of aluminum-matrix composites, Journal of the Minerals, Metals and Materials Society, Vol. 46, p.49–53.

DOI: 10.1007/bf03222634

Google Scholar

[5] Shorowordi K.M., Laoui T., Haseeb A.S.M.A., Celis J.P., Froyen L., 2003. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites, Journal of Material Processing Technology, Vol. 142, p.738–743.

DOI: 10.1016/s0924-0136(03)00815-x

Google Scholar

[6] Rohatgi, P.K., 1994. Low-cost, fly ash-containing aluminum-matrix composites. JOM 46, 55-59.

DOI: 10.1007/bf03222635

Google Scholar

[7] Sukanya M. S, Rachana K. and Sharma S.S. (2014).

Google Scholar

[8] Basavarajappa, S., Chandramohan.G., Dinesh, A. 2004, Mechanical properties of MMCs-An experimental investigation, Int. symposium of research on Materials and Engineering, IIT, Madras, December 20, 1-8.

Google Scholar

[9] Seah,H. W, Sharma S.C., Girish, B.M. 1995, Mechanical properties of cast ZA-27/Graphite particulate composites, Materials and Design, 16, 271-275.

DOI: 10.1016/0261-3069(96)00001-5

Google Scholar

[10] Suresh K.R., Niranjan, H.B., Jebraj, M.J. Chowdiah, M.P. 2003, Tensile and wear properties of aluminium composites, Wear, 255, 638-642.

DOI: 10.1016/s0043-1648(03)00292-8

Google Scholar

[11] B. Pena and J. Lozano, Microstructure and mechanical property developments in AL-12Si gravity die castings after Ti and/ or Sr additions, Materials Characterization, vol. 57, pp.218-226, (2006).

DOI: 10.1016/j.matchar.2006.01.015

Google Scholar

[12] O. E. Sebaie, A. M. Samuel, F. H. Samuel, and H. W. Doty, "The effects of michmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319. 1, A356. 2 and A413. 1 Al-Si casting alloys, Materials Science & Engineering A, vol. 480, pp.342-355, (2008).

DOI: 10.1016/j.msea.2007.07.039

Google Scholar

[13] Zhong, H., Rometsch, P., & Estrin, Y. (2014).

Google Scholar

[14] Zhang Q, Chen G, Wu G, Xiu Z, Luan B. Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology. Mater Lett 2003; 57: 1453-58.

DOI: 10.1016/s0167-577x(02)01006-6

Google Scholar

[15] Anilkumar, H. C., Hebbar, H. S., & Ravishankar, K. S. (2011). Mechanical Properties Of Fly Ash Reinforced Aluminium Alloy ( Al6061 ) Composites, 6(1), 41–45.

Google Scholar

[16] Aravindan, S., Rao, P. V., & Ponappa, K. (2015). Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. Journal of Magnesium and Alloys, 3(1), 52–62. doi: 10. 1016/j. jma. 2014. 12. 008.

DOI: 10.1016/j.jma.2014.12.008

Google Scholar

[17] Hadley, S. W., Das, S., & Miller, J. W. (2000). Aluminum R & D for Automotive Uses And the Department of Energy ' s Role. Energy.

Google Scholar

[18] David, R. S. J., & Robinson. S. D. S. D. (2013). Synthesis and characterization of Al6061-Fly Ash p -SiC p composites by stir casting and compocasting methods. Energy Procedia, 34, 637–646. doi: 10. 1016/j. egypro. 2013. 06. 795.

DOI: 10.1016/j.egypro.2013.06.795

Google Scholar

[19] Kumar, A., Lal, S., & Kumar, S. (2013).

Google Scholar

[20] Lokesh, G. N., Ramachandra, M., Mahendra, K. V, & Sreenith, T. (2013). Characterization of Al-Cu alloy reinforced fly ash metal matrix composites by squeeze casting method, 5(4), 71–79.

DOI: 10.4314/ijest.v5i4.7

Google Scholar

[21] Ramezanianpour, A. A. (2014). Cement Replacement Materials (p.336). doi: 10. 1007/978-3-642-36721-2.

Google Scholar

[22] Singla, D., & Mediratta, S. R. (2013). Evaluation Of Mechanical Properties Of Al 7075-Fly Ash, 2(4), 951–959.

Google Scholar