Solidification of Sn-3Ag-0.5Cu and Sn-0.7Cu-0.05Ni Solders

Article Preview

Abstract:

The solidification of Sn-3Ag-0.5Cu and Sn-0.7Cu-0.05Ni are overviewed and compared. In joints on Cu substrates, both solders begin solidification with primary Cu6Sn5 growing in the bulk liquid prior to tin nucleation. In freestanding balls and joints, SAC305 generally solidifies with a single tin nucleation event and exhibits a mutually-twinned tin grain structure. In contrast, SN100C BGA balls and joints exhibit multiple independent tin grains that grow as a columnar array in joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-48

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Anderson IE. J. Mater. Sci. Mater. Electron. 2007; 18: pp.55-76.

Google Scholar

[2] Schueller R, Blattau N, Arnold J, Hillman C. SMTA Journal 2010; 23: pp.18-26.

Google Scholar

[3] Henshall G, et al. Electronic Manufacturing Technology Symposium (IEMT), 35th IEEE/CPMT International: IEEE; 2012. pp.1-11.

Google Scholar

[4] Gourlay CM, Read J, Nogita K, Dahle AK. J. Electron. Mater. 2008; 37 (1) pp.51-60.

Google Scholar

[5] Tsukamoto H, et al. Microelectron. Reliab. 2011; 51: pp.657-667.

Google Scholar

[6] Nogita K, Nishimura T. Scripta Mater. 2008; 59: pp.191-194.

Google Scholar

[7] Yang C, Song F, Lee SR. Microelectron. Reliab. 2014; 54: pp.435-446.

Google Scholar

[8] Ventura T, Gourlay CM, Nogita K, Dahle AK. J. Electron. Mater. 2008; 37 (1): pp.32-39.

Google Scholar

[9] Silva BL, Cheung N, Garcia A, Spinelli JE. J. Electron. Mater. 2013; 42: pp.179-191.

Google Scholar

[10] Hammad AE. Materials & Design 2013; 52: pp.663-670.

Google Scholar

[11] Gyenes A, et al. Archives of Metallurgy and Materials 2015; 60: pp.1449-1454.

Google Scholar

[12] Vuorinen V, Yu H, Laurila T, Kivilahti JK. J. Electron. Mater. 2008; 37: pp.792-805.

Google Scholar

[13] Gourlay CM, Nogita K, Read J, Dahle AK. J. Electron. Mater. 2010; 39 (1): pp.56-69.

Google Scholar

[14] Gourlay CM, Nogita K, Dahle AK, Yamamoto Y, Uesugi K, Nagira T, et al. Acta Mater. 2011; 59 (10): pp.4043-4054.

DOI: 10.1016/j.actamat.2011.03.028

Google Scholar

[15] Gourlay CM, Belyakov SA, Ma ZL, Xian JW. JOM 2015; 67 (10): pp.2383-2393.

Google Scholar

[16] Mohd Salleh MAA, et al. Scripta Mater. 2015; 100: pp.17-20.

Google Scholar

[17] Wang TM, Zhou P, Cao F, Kang HJ, Chen ZN, Fu YN, et al. Intermetallics 2015; 58: pp.84-90.

Google Scholar

[18] Xian JW, Belyakov SA, Britton TB, Gourlay CM. J. Alloy Compd 2015; 619: pp.345-355.

Google Scholar

[19] Arfaei B, Kim N, Cotts EJ. J. Electron. Mater. 2012; 41: pp.362-374.

Google Scholar

[20] Lehman LP, Xing Y, Bieler TR, Cotts EJ. Acta Mater. 2010; 58: pp.3546-3556.

Google Scholar