Large Area 4H SiC Products for Power Electronic Devices

Article Preview

Abstract:

Efforts to develop 150 mm 4H SiC bare wafer and epitaxial substrates for power electronic device applications have resulted in quality improvements, such that key metrics match or outperform 100 mm substrates. Total dislocation densities and threading screw dislocation densities measured for 150 mm wafers were ~4100 cm-2 and ~100 cm-2, respectively, compared with values of ~5900 cm-2 and ~300 cm-2 measured for 100 mm wafers. While median basal plane dislocation counts in 150 mm samples exceed those of the smaller platform, a nearly 45% reduction was realized, resulting in a median density of ~3900 cm-2. Epilayers grown on 150 mm substrates likewise exhibit quality metrics that are comparable to 100 mm samples, with median thickness and doping sigma/mean values of 1.1% and 4.4%, respectively.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] D. K. Schroder, Progress in SiC Materials/Devices and their Competition, International Journal of High Speed Electronics and Systems 21 (2012) 1250009-1-24.

DOI: 10.1142/s0129156412500097

Google Scholar

[2] H. Lendenmann, F. Dahlquist, J. P. Bergman, H. Bleichner and C. Hallin, High-Power SiC diodes: characteristics, reliability, and relation to material defects, Materials Science Forum 389-393 (2002) 1259-1264.

DOI: 10.4028/www.scientific.net/msf.389-393.1259

Google Scholar

[3] H. Jacobson, J. Bergman, C. Hallin, E. Janzen, T. Tuomi and H. Lendenmann, Properties and origins of different stacking faults that cause degradation in SiC PiN diodes, Journal of Applied Physics 95 (2004) 1485-1488.

DOI: 10.1063/1.1635996

Google Scholar

[4] T. Katsuno, Y. Watanabe, T. Ishikawa, H. Fujiwara, M. Konishi, T. Morino and T. Endo, Surface morphology of leakage current source of 4H-SiC Schottky barrier diode by atomic force microscopy, Materials Science Forum 717-720 (2012) 375-378.

DOI: 10.4028/www.scientific.net/msf.717-720.375

Google Scholar

[5] T. Ishikawa, T. Katsuno, Y. Watanabe, H. Fujiwara and T. Endo, Critical density of nanoscale pits for suppressing variability in leakage current of a SiC Schottky barrier diode, Materials Science Forum 717-720 (2012) 371-374.

DOI: 10.4028/www.scientific.net/msf.717-720.371

Google Scholar

[6] J. Quast, D. Hansen, M. Loboda, I. Manning, K. Moeggenborg, S. Mueller, C. Parfeniuk, E. Sanchez and C. Whiteley, High quality 150 mm 4H SiC wafers for power device production, Materials Science Forum 821-823 (2015) 56-59.

DOI: 10.4028/www.scientific.net/msf.821-823.56

Google Scholar

[7] B. Thomas, D. Hansen, J. Zhang, M. Loboda, J. Uchiyama, T. Toth, G. Chung, I. Manning, J. Quast and S. Mueller, Progress in large-area 4H-SiC epitaxial layer growth in a warm-wall planetary reactor, Materials Science Forum 778-780 (2014) 103-108.

DOI: 10.4028/www.scientific.net/msf.778-780.103

Google Scholar

[8] J. Zhang, D. Hansen, V. Torres, B. Thomas, G. Chung, H. Makoto, I. Manning, J. Quast, C. Whiteley, E. Sanchez, S. Mueller, M. Loboda, H. Wang, F. Wu and M. Dudley, Defect reduction paths in SiC Epitaxy, in MRS Online Proceedings Library, (2014).

DOI: 10.1557/opl.2014.579

Google Scholar

[9] J. Zhang, B. Thomas, K. Moeggenborg, V. M. Torres and D. Hansen, Progress of SiC epitaxy on 150mm substrates, Materials Science Forum 821-823 (2015) 161-164.

DOI: 10.4028/www.scientific.net/msf.821-823.161

Google Scholar

[10] S. G. Müller, R. Glass, H. Hobgood, V. Tsvetkov, M. Brady, D. Henshall, J. Jenny, D. Malta and C. Carter Jr., The status of SiC bulk growth from an industrial point of view, Journal of Crystal Growth 211 (2000) 325-332.

DOI: 10.1016/s0022-0248(99)00835-0

Google Scholar