Innovative Surface Treatments of Titanium Alloys for Biomedical Applications

Article Preview

Abstract:

Biomedical engineering is an advanced technology based on an extremely complex development of advanced biomaterials. Since the first Consensus Conference in Chester (UK) on Definitions in Biomaterials of the European Society for Biomaterials, in 1986, biomaterial was defined as ‘a bioinert or bioactive material used in a material advice, intended to interact with biological systems, restore functions of natural living tissues and organism in the body’. In this way, passive metallic materials (as titanium alloys), a broad spectrum of bioceramics, even biopolymers and all combinations of these biomaterials are used for numerous medical devices owing to their high biocompatibility. For example, titanium alloys can be employed for the femoral stems in the total hip joint replacement (trh) or for dental applications. Among the different clinical aims of an implant, a high osseointegration is required and crucial. In order to prevent the alloys from the aggressive body environment, surface modification of implants are employed to render them protection from both wear, corrosion and even tribocorrosion. In addition to the surface treatments, new implant materials are also being fabricated with biocompatible alloying elements to reduce the toxic effects of the alloying elements. These presentation describes the methodologies that could be adapted to overcome some of the factors leading to implant failure. It gives a panorama and shows that the different processes can increase noticeably the performance of the alloy as orthopedic and dental implant. It also gives prospects for the development of new possible ways for enhancing the biosecurity of such material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1570-1575

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Yan Guo, A. Tin Hong Tang, & J. Pekka Matinlinna, Insights into Surface Treatment Methods of Titanium Dental Implants, J. of Adhesion Science and Technology, 26 (2012) 189–205.

DOI: 10.1163/016942411x569390

Google Scholar

[2] C. C. Mouafo Tambo, Les nouveaux traitements de surface d'implants dentaitres en titane et leur influence sur l'osteointegration, Ph-D report, University of Nantes, France, March (2010).

Google Scholar

[3] S. Mayot, « Pertinence des publications scientifiques en implantologie orale : les états de surface », Ph-D report, University of Nancy I, France, (2009).

Google Scholar

[4] U. Lekholm, G. A. Zarb, Patient selection and preparation, in: P. I. Branemark, G. A. Zarb, T. . Albrektsson, (Eds), Tissue-integrated prostheses: osseointegration in clinical dentistry, Quintessence, Chicago, 1985, pp.199-209.

Google Scholar

[5] A. Gulashi, Bone assessment for dental implants, in: I. Turkyilmaz (Ed), Implant Dentistry – The most promising Discipline of Dentistry, In Tech, 2011, pp.437-452.

DOI: 10.5772/16588

Google Scholar

[6] P. I. Branemark., Introduction à l'ostéointégration – Prothèses ostéointégrées, CdP, Paris, (1988).

Google Scholar

[7] M. Trevoux, A. Behlouli, De la biofonctionnalité des implants dentaires, Implantologie Revue, Nov. (2010), 141-149.

Google Scholar

[8] A. Wennerberg, T. Albrektsson, Surfaces implantaires rugueuses au-delà du micron : données expérimentales et cliniques sur la topographie et la chimie de surface, Implant, (2006), 12 (3), 195-201.

Google Scholar

[9] R. J. Lazzara, Conception d'un système d'implants dentaires et son incidence potentielle à long terme sur l'aspect esthétique : étude de l'implant conique 3i T3®, Biomet 3I, (2012).

Google Scholar

[10] H. M. Khanlou, B. Chin Ang, M. M. Barzani, M. Silakhori, S. Talebian, Prediction and characterization of surface roughness using sandblasting and acid etching process on new non-toxic titanium biomaterial: adaptive-network-based fuzzy inference System, Neural Computing and Applications, (2015).

DOI: 10.1007/s00521-015-1833-z

Google Scholar

[11] A. M. Ballo, O. Omar, W. Xia and A. Palmquist, Dental Implant Surfaces – Physico-chemical Properties, Biological Performance, and Trends, in: I. Turkyilmaz (Ed), Implant Dentistry - A Rapidly Evolving Practice, In Tech, 2011, pp.19-56.

DOI: 10.5772/17512

Google Scholar

[12] C. N. Elias, Titanium dental implant surface, Materia (Rio J. ) Vol. 15 n°2 Rio de Janeiro (2010).

DOI: 10.1590/s1517-70762010000200008

Google Scholar

[13] S. Anil, P. S. Anand P.S., H. Alghamdi and J. A. Jansen J.A., Dental Implant Surface Enhancement and Osseointegration, in: I. Turkyilmaz (Ed), Implant Dentistry - A Rapidly Evolving Practice, In Tech, 2011, pp.83-108.

DOI: 10.5772/16475

Google Scholar