Manufacturing of ODS RAFM Steel: Mechanical and Microstructural Characterization

Article Preview

Abstract:

Ferritic ODS 14Cr steels reinforced by means of Yttrium oxide nanoclusters represent one of the options for future structural applications in nuclear Generation IV reactors. Due to their high tensile properties and resistance to irradiation damage, Oxide Dispersion Strengthened Steels (ODS-S) have been suggested for nuclear fusion applications. The present paper describes the experimental procedure of mechanical alloying, canning and hot extrusion adopted to produce ODS rods. The effect of variations in the processing parameters are also discussed. Hot extrusion has been successfully applied to produce a batch of about 10 kg of ODS steel. Full size ASTM E21 and E8 specimens have been tested from room temperature up to 800 °C. The microstructure characterization of the manufactured materials has been carried out by transmission electron microscopy. Ultimate tensile stress higher than 1350 MPa have been obtained in the as-extruded material and higher than 1100 MPa in samples annealed for 4 hours at 800 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1639-1644

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ukai et al., J. Nucl. Mater., 204 (1993) 65-73.

Google Scholar

[2] S. Ukai, M. Fujiwara, J. Nucl. Mater., 307–311 (2002) 749-57.

Google Scholar

[3] R.L. Klueh et al., J. Nucl. Mater., 307-311 (2002) 455-65.

Google Scholar

[4] P. Unifantowicz et al., Proc. of the 24th IAEA Fusion Energy Conference, (2012).

Google Scholar

[5] V. de Castro et al., J. Nucl. Mater., 417 (2011) 217-220.

Google Scholar

[6] V. de Castro et al., J. Nucl. Mater., 367-370 (2007) 196-201.

Google Scholar

[7] M. Yurechko et al., J. Nucl. Mater., 450 (2014) 88-98.

Google Scholar

[8] J.S. Veternikova et al., J. of Nucl. Mater., 450 (2014) 99-103.

Google Scholar

[9] H.S. Cho, A. Kimura, S. Ukai, M. Fujiwara, J. Nucl. Mater., 329–333 (2004) 387-391.

Google Scholar

[10] A. Ramar, N. Baluc, R. Schäublin, J. of Nucl. Mater., 386-388 (2009) 515-519.

Google Scholar

[11] Y. De Carlan et al., J. Nucl. Mater., 386-388 (2009) 430-32.

Google Scholar

[12] M. Wang, Z. Zhou, H. Sun, H. Hu, S. Li, Mater. Sci. Eng., A, 559 (2013) 287-92.

Google Scholar

[13] M. Kawahara, H. Kim, M. Tokita, Proc. of Powder Metallurgy World Congress, 741; (2000).

Google Scholar

[14] H. W. Zhang, R. Gopalan, T. Mukai, K. Hono, Scripta Mater., 53 (2005) 863-873.

Google Scholar

[15] M. Cabibbo et al., Mater. Sci. Forum, 604-605 (2009) 203-211.

Google Scholar

[16] G. Ji, T. Grosdidier, N. Bozzolo, S. Launois, Intermetallics, 15 (2007) 108-118.

Google Scholar

[17] X. Boulnat et al., Metall. and Mater. Trans. A, 44A (2013) 2461-2464.

Google Scholar

[18] Z. S. Chen et al., Bull. Mater. Sci., Vol. 34 (2011), 429–434.

Google Scholar

[19] S. Ukai, Mater. Sci. Eng. A 510–511 (2009) 115–120.

Google Scholar

[20] Z. Lu et al., Acta Metall. Sin. 48 (2012) 62-85.

Google Scholar

[21] http: /www. matcalc. tuwien. ac. at.

Google Scholar

[22] Bhaskar S. Majumdar, Mater. Sci. Eng. A , 259 (1999) 171–188.

Google Scholar

[23] A. Alamo et al., J. Nucl. Materials 329–333 (2004) 333–337.

Google Scholar