Effect of Silicide on Dynamic Recrystallization in Near Alpha Titanium Alloy

Article Preview

Abstract:

Dynamic recrystallization in Ti-1100 was investigated. Ti-1100 is one of near α titanium alloys and contains Si for improving high temperature mechanical properties. Ti-1100 exhibits martensitic transformation by quenching into iced brine after solid solution treatment. Hereafter specimens subjected to quenching into iced brine and to cooling in air after solid solution treatment are called IBQ specimen and AC specimen, respectively. After tensile test at high temperature, IBQ specimen exhibits morphological change from lath structure to equiaxed structure, but AC specimen does not. It is indicated that dynamic recrystallization occurs during the tensile test of IBQ specimen. Effect of silicide on the dynamic recrystallization was investigated using two specimens: one included more silicide precipitates and the other less. The former specimen shows smaller recrystallized grains than the latter. It is indicated that the specimen including more silicides exhibits smaller recrystallized grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1634-1638

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Eylon, S. Fujishiro and F. H. Froes, High Temp. Mater. Processes, 6 (1984) 81-91.

Google Scholar

[2] N. Singh and V. Singh, Mater. Sci. Eng. A, 485 (2008) 130-139.

Google Scholar

[3] Z. Chen, J. Li, J. Liu, Q. Wang, J. Liu and R. Yang, J. Mater. Sci. Technol., 26 (2010) 564-571.

Google Scholar

[4] N. E. Paton and M. W. Mahoney, Metall. Trans. A, 7A (1976) 1685-1694.

Google Scholar

[5] A. Madsen, E. Andrieu and H. Ghonem, Mater. Sci. Eng. A, 171 (1993) 191-197.

Google Scholar

[6] A. Madsen and H. Ghonem, Mater. Sci. Eng. A, 177 (1994) 63-73.

Google Scholar

[7] A. H. Rosenberger, A. Madsen and H. Ghonem, J. Mater. Eng. Perform., 4 (1995) 182-187.

Google Scholar

[8] D. H. Lee and S. W. Nam, J. Mater. Sci., 34 (1999) 2843-2849.

Google Scholar

[9] D. H. Lee, S. W. Nam and S. J. Choe, Mater. Sci. Eng. A, 291 (2000) 60-67.

Google Scholar

[10] H. Matsumoto, H. Yoneda, D. Fabregue, E. Maire, A. Chiba, F. Gejima, J. Alloys and Compounds, 509 (2011) 2684-2692.

DOI: 10.1016/j.jallcom.2010.11.089

Google Scholar

[11] H. M. Flower, P. R. Swann and D. R. F. West, J. Mater. Sci., 7 (1972) 929-938.

Google Scholar

[12] H. Matsumoto, S. H. Lee, Y. OnoY. Li and A. Chiba, Adv. Eng. Mater., 13 (2011) 470-474.

Google Scholar

[13] H. Matsumoto, L. Bin, S. H. Lee, Y. Li, Y. Ono and A. Chiba, Metall. Mater. Trans. A, 44A (2013) 3245-3260.

Google Scholar

[14] A. S. H. Kabir, M. Sanjari, J. Su, I. H. Jung and S. Yue, Mater. Sci. Eng. A, 616 (2014) 252-259.

Google Scholar

[15] Y. Lang, Y. Cai, H. Cui and J. Zhang, Mater. Design, 32 (2011) 4241-4246.

Google Scholar

[16] Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma and R.D.K. Misra, Mater. Sci. Eng. A, 585 (2013) 71-85.

Google Scholar

[17] S.K. Badjena and J.K. Park, Mater. Sci. Eng. A, 548 (2012) 126-133.

Google Scholar

[18] W. T. Donlon, J. E. Allison and J. V. Lasecki, Titanium '92 Science and Technology (1993) 295-302.

Google Scholar