Effect of Chlorine Atoms for Development of Aluminum Corrosion

Article Preview

Abstract:

Computational density functional theory (DFT) model of the adsorption of chlorine atoms onto the perfect Al (111) surface has been performed. The structural and electronic properties of chlorine atoms adsorbed on the surface are investigated within a supercell approach for chlorine coverages of 0.25, 0.33, 0.5 and 1 ML respectively. It is found that the adsorbates prefer on-top sites over bridge, hcp and fcc sites in low coverage while fcc sites in high coverage, and the binding energy decrease with increase of coverage due to the interactions of chlorine atoms. The discussion of geometrical and electronic analysis by plotting differential charge density distribution and projected density of states (PDOS) are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2170-2174

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. M. Natishan and W. E. O'Grady, Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review, J. Electrochem. Soc. 161 (9) (2014) C421-C432.

DOI: 10.1149/2.1011409jes

Google Scholar

[2] T. J. Grassman, G. C. Poon and A. C. Kummel, Low coverage spontaneous etching and hyperthermal desorption of aluminum chlorides from Cl2/Al(111), J. Chem. Phys. 121 (2004) 9018.

DOI: 10.1063/1.1805495

Google Scholar

[3] B. E. Blöchl, Projector augumented-wave method, Phys. Rev. B 50 (1994) 17953.

Google Scholar

[4] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter 21 (2009).

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[5] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865l.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[6] M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40 (1989) 3616.

DOI: 10.1103/physrevb.40.3616

Google Scholar

[7] A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comp. Mater. Sci. (2003) 28, 155 (Code available from http: /www. xcrysden. org/).

DOI: 10.1016/s0927-0256(03)00104-6

Google Scholar

[8] R. Gaudoin and W. M. C. Foulkes, Ab initio calculations of bulk moduli and comparison with experiment, Phys. Rev. B 66 (2002) 052104.

DOI: 10.1103/physrevb.66.052104

Google Scholar

[9] D. R. Lide, CRC Handbook of Chemistry and Physics, 74th ed., CRC Press, Boca Raton, FL, (1993).

Google Scholar

[10] A. Kiejna and B. I. Lundqvist, First-principles study of surface and subsurface O structures at Al(111), Phys. Rev. B 63 (2001) 085405.

DOI: 10.1103/physrevb.64.049901

Google Scholar

[11] K. Mitsutake, J. Yamauchi, A. Sakai and M. Tsukada, Theoretical study of dissociative adsorption of Cl2 on the Al surface, Surf. Sci. 324 (1995) 106-112.

DOI: 10.1016/0039-6028(94)00707-1

Google Scholar