Effect of Grain Size on Oxidation Resistance of Unalloyed Titanium

Article Preview

Abstract:

The effect of the grain size on the high-temperature oxidation resistance of unalloyed titanium was experimentally investigated using titanium samples with two different grain sizes of 219 μm and 118 μm. The weight gain during oxidation and the penetration depth of oxygen from a metal surface were larger in the small-grain-size sample compared with the large-grain-size sample. In addition, oxygen diffusion was faster in the substrate of the small-grain-size sample. These results were attributed to the grain-boundary diffusion of oxygen. A steep change in the oxygen concentration was observed at a grain boundary. Our simulation results suggested that slower oxygen diffusion into the inner grain from the surface through the grain boundary with high diffusivity can cause the observed steep change in the oxygen concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2187-2191

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. LÜtjering, J.C. Williams, Titanium, second ed., Springer, Berlin, 2003, p.9.

Google Scholar

[2] J. H. Perepezko, The hotter the engine, the better, Science, 326 (2009) 1068-1069.

DOI: 10.1126/science.1179327

Google Scholar

[3] K. S. Mcreynolds, S. Tamirisakandala, A study on alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo, Metallurgical and Materials Transactions A, 42 A (2011) 1732-1736.

DOI: 10.1007/s11661-011-0710-3

Google Scholar

[4] T. Kitashima, L. J. Liu, H. Murakami, Numerical analysis of oxygen transport in alpha titanium during isothermal oxidation, Journal of The Electrochemical Society, 160 (2013) C441-C444.

DOI: 10.1149/2.100309jes

Google Scholar

[5] D. A. P. Reis, C. R. M. Silva, M. C. A. Nono, M. J. R. Barboza, F. Piorino Neto, E. A. C. Perez, Effect of environment on the creep behavior of the Ti-6Al-4V alloy, Materials Science and Engineering A, 399 (2005) 276-280.

DOI: 10.1016/j.msea.2005.03.073

Google Scholar

[6] Z. Liu, G. Welsch, Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys, Metallurgical Transactions A, 19A (1988) 527-542.

DOI: 10.1007/bf02649267

Google Scholar

[7] R. A. Brockman, A. L. Pilchak, W. J. Porter, R. John, Estimation of grain boundary diffusivity in near alpha titanium polycrystals, Scripta Materialia, 65 (2011) 513-515.

DOI: 10.1016/j.scriptamat.2011.06.015

Google Scholar

[8] D. Gupta, P. S. Ho, Diffusion processes in thin films, Thin Solid Films, 72 (1980) 399-418.

DOI: 10.1016/0040-6090(80)90524-6

Google Scholar

[9] S. Yamaura, Y. Igarashi, S. Tsurekawa, T. Watanabe, Structure-dependent intergranular oxidation in Ni-Fe polycrystalline alloy, Acta Materialia, 47 (1999) 1163-1174.

DOI: 10.1016/s1359-6454(99)00007-5

Google Scholar

[10] F. M. Güçlü, H. Çimenoglu, E. S. Kayali, The recrystallization and thermal oxidation behavior of CP-titanium, Materials Science and Engineering C, 26 (2006) 1367-1372.

DOI: 10.1016/j.msec.2005.08.012

Google Scholar

[11] F. X. Gil, D. Rodriguez, J. A. Planell, Grain growth kinetics of pure titanium, Scripta Metallurgica et Materialia, 33 (1995) 1361-1366.

DOI: 10.1016/0956-716x(95)00367-5

Google Scholar

[12] P. Perez, Influence of the alloy grain size on the oxidation behavior of PM2000 alloy, Corrosion Science, 44 (2002) 1793-1808.

DOI: 10.1016/s0010-938x(01)00182-2

Google Scholar

[13] F. Pitt, M. Ramulu, Influence of grain size and microstructure on oxidation rates in titanium alloy Ti-6Al-4V under superplastic forming conditions, Journal of Materials Engineering and Performance, 13 (2004) 727-734.

DOI: 10.1361/10599490421394

Google Scholar

[14] H. H. Wu, D. R. Trinkle, Direct diffusion through interpenetrating networks: Oxygen in titanium. Physical review letters, 107 (2011) 045504.

DOI: 10.1103/physrevlett.107.045504

Google Scholar

[15] D. David, G. Beranger, E. A. Garcia, A study of the diffusion of oxygen in α - titanium oxidized in the temperature range 460°–700° C, Journal of The Electrochemical Society, 130 (1983) 1423-1426.

DOI: 10.1149/1.2119966

Google Scholar

[16] A. Katsman, H. J. Grabke, L. Levin, Penetration of oxygen along grain boundaries during oxidation of alloys and intermetallics, Oxidation of Metals, 46 (1996) 313-331.

DOI: 10.1007/bf01050802

Google Scholar