[1]
G. LÜtjering, J.C. Williams, Titanium, second ed., Springer, Berlin, 2003, p.9.
Google Scholar
[2]
J. H. Perepezko, The hotter the engine, the better, Science, 326 (2009) 1068-1069.
DOI: 10.1126/science.1179327
Google Scholar
[3]
K. S. Mcreynolds, S. Tamirisakandala, A study on alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo, Metallurgical and Materials Transactions A, 42 A (2011) 1732-1736.
DOI: 10.1007/s11661-011-0710-3
Google Scholar
[4]
T. Kitashima, L. J. Liu, H. Murakami, Numerical analysis of oxygen transport in alpha titanium during isothermal oxidation, Journal of The Electrochemical Society, 160 (2013) C441-C444.
DOI: 10.1149/2.100309jes
Google Scholar
[5]
D. A. P. Reis, C. R. M. Silva, M. C. A. Nono, M. J. R. Barboza, F. Piorino Neto, E. A. C. Perez, Effect of environment on the creep behavior of the Ti-6Al-4V alloy, Materials Science and Engineering A, 399 (2005) 276-280.
DOI: 10.1016/j.msea.2005.03.073
Google Scholar
[6]
Z. Liu, G. Welsch, Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys, Metallurgical Transactions A, 19A (1988) 527-542.
DOI: 10.1007/bf02649267
Google Scholar
[7]
R. A. Brockman, A. L. Pilchak, W. J. Porter, R. John, Estimation of grain boundary diffusivity in near alpha titanium polycrystals, Scripta Materialia, 65 (2011) 513-515.
DOI: 10.1016/j.scriptamat.2011.06.015
Google Scholar
[8]
D. Gupta, P. S. Ho, Diffusion processes in thin films, Thin Solid Films, 72 (1980) 399-418.
DOI: 10.1016/0040-6090(80)90524-6
Google Scholar
[9]
S. Yamaura, Y. Igarashi, S. Tsurekawa, T. Watanabe, Structure-dependent intergranular oxidation in Ni-Fe polycrystalline alloy, Acta Materialia, 47 (1999) 1163-1174.
DOI: 10.1016/s1359-6454(99)00007-5
Google Scholar
[10]
F. M. Güçlü, H. Çimenoglu, E. S. Kayali, The recrystallization and thermal oxidation behavior of CP-titanium, Materials Science and Engineering C, 26 (2006) 1367-1372.
DOI: 10.1016/j.msec.2005.08.012
Google Scholar
[11]
F. X. Gil, D. Rodriguez, J. A. Planell, Grain growth kinetics of pure titanium, Scripta Metallurgica et Materialia, 33 (1995) 1361-1366.
DOI: 10.1016/0956-716x(95)00367-5
Google Scholar
[12]
P. Perez, Influence of the alloy grain size on the oxidation behavior of PM2000 alloy, Corrosion Science, 44 (2002) 1793-1808.
DOI: 10.1016/s0010-938x(01)00182-2
Google Scholar
[13]
F. Pitt, M. Ramulu, Influence of grain size and microstructure on oxidation rates in titanium alloy Ti-6Al-4V under superplastic forming conditions, Journal of Materials Engineering and Performance, 13 (2004) 727-734.
DOI: 10.1361/10599490421394
Google Scholar
[14]
H. H. Wu, D. R. Trinkle, Direct diffusion through interpenetrating networks: Oxygen in titanium. Physical review letters, 107 (2011) 045504.
DOI: 10.1103/physrevlett.107.045504
Google Scholar
[15]
D. David, G. Beranger, E. A. Garcia, A study of the diffusion of oxygen in α - titanium oxidized in the temperature range 460°–700° C, Journal of The Electrochemical Society, 130 (1983) 1423-1426.
DOI: 10.1149/1.2119966
Google Scholar
[16]
A. Katsman, H. J. Grabke, L. Levin, Penetration of oxygen along grain boundaries during oxidation of alloys and intermetallics, Oxidation of Metals, 46 (1996) 313-331.
DOI: 10.1007/bf01050802
Google Scholar