Crystal Structure, Microstructure and Martensitic Transformation Path in Ni-Mn-In Alloys

Article Preview

Abstract:

In the present work, the crystal structure, microstructure and martensitic transformation path in Ni-Mn-In alloys were systematically studied. Results show that the austenite has a highly ordered cubic L21 structure. The martensite phase possesses a 6M incommensurate monoclinic modulated structure. The microstructure of martensite is in plate shape and self-organized in colonies. The maximum of 6 distinct martensite colonies and 24 kinds of variants in one parent grain are observed. Both of K-S and Pitsch orientation relations are found to be appropriate to describe the lattice correspondence between the parent and product phase. However, the transformation path related to Pitsch relation should be the real one that governs the transformation process in Ni-Mn-In alloys. With the determined martensitic transformation path, the formation mechanism of the microstructure of martensite phase is revealed. The 6 distinct martensite colonies are respectively generated by the six (110) planes of the cubic austenite phase during martensitic transformation. Each (110) plane transforms into four twin-related variants by changing the directions of the transformation plane and direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2181-2186

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957-960.

DOI: 10.1038/nature04493

Google Scholar

[2] J.L. Sánchez Llamazares, T. Sanchez, J.D. Santos, M.J. Pérez, M.L. Sanchez, B. Hernando, L. Escoda, J.J. Suñol, R. Varga, Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons, Appl. Phys. Lett. 92 (2008) 012513.

DOI: 10.1063/1.2827179

Google Scholar

[3] T. Samanta, A.U. Saleheen, D.L. Lepkowski, A. Shankar, I. Dubenko, A. Quetz, M. Khan, N. Ali, S. Stadler, Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys, Phys. Rev. B 90 (2014) 6.

DOI: 10.1103/physrevb.90.064412

Google Scholar

[4] M. Brokate, Hysteresis and phase transitions, Springer-Verlag, New York, (1996).

Google Scholar

[5] Y.Y. Gong, D.H. Wang, Q.Q. Cao, E.K. Liu, J. Liu, Y.W. Du, Electric field control of the magnetocaloric effect, Adv Mater 27 (2015) 801-805.

DOI: 10.1002/adma.201404725

Google Scholar

[6] V.K. Pecharsky, K.A. Gschneidner Jr., Y. Mudryk, D. Paudyal, Making the most of the magnetic and lattice entropy changes, J. Magn. Magn. Mater. 321 (2009) 3541-3547.

DOI: 10.1016/j.jmmm.2008.03.013

Google Scholar

[7] Z.Y. Zhang, R.D. James, S. Müller, Energy barriers and hysteresis in martensitic phase transformations, Acta Mater. 57 (2009) 4332-4352.

DOI: 10.1016/j.actamat.2009.05.034

Google Scholar

[8] W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, K. Ishida, Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys, Metall. Mater. Trans. A 38 (2007) 759-766.

DOI: 10.1007/s11661-007-9094-9

Google Scholar

[9] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys, Phys. Rev. B 73 (2006) 174413.

DOI: 10.1103/physrevb.73.174413

Google Scholar

[10] W. Cai, Y. Feng, J.H. Sui, Z.Y. Gao, G.F. Dong, Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons, Scripta Mater. 58 (2008) 830-833.

DOI: 10.1016/j.scriptamat.2007.12.035

Google Scholar

[11] J. Liu, T.G. Woodcock, N. Scheerbaum, O. Gutfleisch, Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons, Acta Mater. 57 (2009) 4911-4920.

DOI: 10.1016/j.actamat.2009.06.054

Google Scholar

[12] Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy, Acta Mater. 59 (2011) 3390-3397.

DOI: 10.1016/j.actamat.2011.02.014

Google Scholar

[13] H.L. Yan, Y.D. Zhang, N. Xu, A. Senyshyn, H. -G. Brokmeier, C. Esling, X. Zhao, L. Zuo, Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys, Acta Mater. 88 (2015) 375-388.

DOI: 10.1016/j.actamat.2015.01.025

Google Scholar

[14] H. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2 (1969) 65-71.

Google Scholar

[15] V. Petříček, M. Dušek, L. Palatinus, Crystallographic Computing System JANA2006: General features, Z. Kristallogr. Cryst. mater. 229 (2014) 345-352.

DOI: 10.1515/zkri-2014-1737

Google Scholar

[16] S. Van Smaalen, Incommensurate Crystallography, Oxford University Press, Oxford, (2007).

Google Scholar

[17] L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Besseghini, C. Ritter, F. Passaretti, Crystal structure of 7M modulated Ni-Mn-Ga martensitic phase, Acta Mater. 56 (2008) 4529-4535.

DOI: 10.1016/j.actamat.2008.05.010

Google Scholar

[18] Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Determination of the orientation relationship between austenite and incommensurate 7M modulated martensite in Ni-Mn-Ga alloys, Acta Mater. 59 (2011) 2762-2772.

DOI: 10.1016/j.actamat.2011.01.015

Google Scholar

[19] Y. Zhang, C. Esling, X. Zhao, L. Zuo, Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals, J. Appl. Cryst. 40 (2007) 436-440.

DOI: 10.1107/s0021889807014331

Google Scholar

[20] A.G. Khachaturyan, Theory of structural transformations in solids, Courier Corporation, New York, (2008).

Google Scholar

[21] M. Humbert, F. Wagner, H. Moustahfid, C. Esling, Determination of the Orientation of a Parent β Grain from the Orientations of the Inherited α Plates in the Phase Transformation from Body-Centred Cubic to Hexagonal Close Packed, J. Appl. Cryst. 28 (1995).

DOI: 10.1107/s0021889895004067

Google Scholar