[1]
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957-960.
DOI: 10.1038/nature04493
Google Scholar
[2]
J.L. Sánchez Llamazares, T. Sanchez, J.D. Santos, M.J. Pérez, M.L. Sanchez, B. Hernando, L. Escoda, J.J. Suñol, R. Varga, Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons, Appl. Phys. Lett. 92 (2008) 012513.
DOI: 10.1063/1.2827179
Google Scholar
[3]
T. Samanta, A.U. Saleheen, D.L. Lepkowski, A. Shankar, I. Dubenko, A. Quetz, M. Khan, N. Ali, S. Stadler, Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys, Phys. Rev. B 90 (2014) 6.
DOI: 10.1103/physrevb.90.064412
Google Scholar
[4]
M. Brokate, Hysteresis and phase transitions, Springer-Verlag, New York, (1996).
Google Scholar
[5]
Y.Y. Gong, D.H. Wang, Q.Q. Cao, E.K. Liu, J. Liu, Y.W. Du, Electric field control of the magnetocaloric effect, Adv Mater 27 (2015) 801-805.
DOI: 10.1002/adma.201404725
Google Scholar
[6]
V.K. Pecharsky, K.A. Gschneidner Jr., Y. Mudryk, D. Paudyal, Making the most of the magnetic and lattice entropy changes, J. Magn. Magn. Mater. 321 (2009) 3541-3547.
DOI: 10.1016/j.jmmm.2008.03.013
Google Scholar
[7]
Z.Y. Zhang, R.D. James, S. Müller, Energy barriers and hysteresis in martensitic phase transformations, Acta Mater. 57 (2009) 4332-4352.
DOI: 10.1016/j.actamat.2009.05.034
Google Scholar
[8]
W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, K. Ishida, Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys, Metall. Mater. Trans. A 38 (2007) 759-766.
DOI: 10.1007/s11661-007-9094-9
Google Scholar
[9]
T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys, Phys. Rev. B 73 (2006) 174413.
DOI: 10.1103/physrevb.73.174413
Google Scholar
[10]
W. Cai, Y. Feng, J.H. Sui, Z.Y. Gao, G.F. Dong, Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons, Scripta Mater. 58 (2008) 830-833.
DOI: 10.1016/j.scriptamat.2007.12.035
Google Scholar
[11]
J. Liu, T.G. Woodcock, N. Scheerbaum, O. Gutfleisch, Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons, Acta Mater. 57 (2009) 4911-4920.
DOI: 10.1016/j.actamat.2009.06.054
Google Scholar
[12]
Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy, Acta Mater. 59 (2011) 3390-3397.
DOI: 10.1016/j.actamat.2011.02.014
Google Scholar
[13]
H.L. Yan, Y.D. Zhang, N. Xu, A. Senyshyn, H. -G. Brokmeier, C. Esling, X. Zhao, L. Zuo, Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys, Acta Mater. 88 (2015) 375-388.
DOI: 10.1016/j.actamat.2015.01.025
Google Scholar
[14]
H. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2 (1969) 65-71.
Google Scholar
[15]
V. Petříček, M. Dušek, L. Palatinus, Crystallographic Computing System JANA2006: General features, Z. Kristallogr. Cryst. mater. 229 (2014) 345-352.
DOI: 10.1515/zkri-2014-1737
Google Scholar
[16]
S. Van Smaalen, Incommensurate Crystallography, Oxford University Press, Oxford, (2007).
Google Scholar
[17]
L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Besseghini, C. Ritter, F. Passaretti, Crystal structure of 7M modulated Ni-Mn-Ga martensitic phase, Acta Mater. 56 (2008) 4529-4535.
DOI: 10.1016/j.actamat.2008.05.010
Google Scholar
[18]
Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Determination of the orientation relationship between austenite and incommensurate 7M modulated martensite in Ni-Mn-Ga alloys, Acta Mater. 59 (2011) 2762-2772.
DOI: 10.1016/j.actamat.2011.01.015
Google Scholar
[19]
Y. Zhang, C. Esling, X. Zhao, L. Zuo, Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals, J. Appl. Cryst. 40 (2007) 436-440.
DOI: 10.1107/s0021889807014331
Google Scholar
[20]
A.G. Khachaturyan, Theory of structural transformations in solids, Courier Corporation, New York, (2008).
Google Scholar
[21]
M. Humbert, F. Wagner, H. Moustahfid, C. Esling, Determination of the Orientation of a Parent β Grain from the Orientations of the Inherited α Plates in the Phase Transformation from Body-Centred Cubic to Hexagonal Close Packed, J. Appl. Cryst. 28 (1995).
DOI: 10.1107/s0021889895004067
Google Scholar