[1]
A. S. Chaus, Structural and phase transformations during the heat treatment of a cast high-chromium high-speed steel, Phys. Met. Metallogr. 106 (2008) 82-89.
DOI: 10.1134/s0031918x08070119
Google Scholar
[2]
M. J. Wang, S. M. Mu, F. F. Sun, Y. Wang, Influence of rare earth elements on microstructure and mechanical properties of cast high speed steel rolls, J RARE EARTHS 25 (2007) 490-494.
DOI: 10.1016/s1002-0721(07)60462-1
Google Scholar
[3]
A. S. Chaus,F. I. Rudnickii, Effect of modification on the structure and properties of cast tungsten-molybdenum high-speed steels, Met. Sci. Heat Treat. 31 (1989) 121-128.
DOI: 10.1007/bf00738146
Google Scholar
[4]
X. F. Zhou, F. Fang, F. Li, J. Q. Jiang, Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel, J. Mater. Sci. 46 (2011) 1196-1202.
DOI: 10.1007/s10853-010-4895-4
Google Scholar
[5]
H. Asgharzadeh, A. Simchi, Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder, Mater. Sci. Eng., A 403 (2005) 290-298.
DOI: 10.1016/j.msea.2005.05.017
Google Scholar
[6]
Z. H. Liu, D.Q. Zhang, C. K. Chua, K. F. Leong, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact. 84 (2013) 72-80.
DOI: 10.1016/j.matchar.2013.07.010
Google Scholar
[7]
H. J. Niu, I. T. H. Chang, Liquid phase sintering of M3/2 high speed steel by selective laser sintering, Scripta Mater. 39 (1998) 67-72.
DOI: 10.1016/s1359-6462(98)00126-2
Google Scholar
[8]
G. P. Dindaa, A. K. Dasgupta, J. Mazumder, Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability, Mater. Sci. Eng., A 509 (2009) 98-104.
DOI: 10.1016/j.msea.2009.01.009
Google Scholar
[9]
G. F. Sun, S. Bhattacharya, G. P. Dinda, A. Dasgupta, J. Mazumder, Influence of processing parameters on lattice parameters in laser deposited tool alloy steel, Mater. Sci. Eng., A 528 (2011) 5141-5145.
DOI: 10.1016/j.msea.2011.03.003
Google Scholar
[10]
S. Bhattacharya, G. P. Dinda, A. K. Dasgupta, J. Mazumder, Microstructural evolution of AISI 4340 steel during Direct Metal Deposition process, Mater. Sci. Eng., A 528 (2011) 2309-2318.
DOI: 10.1016/j.msea.2010.11.036
Google Scholar
[11]
M. R. Ghomashchi, Quantitative microstrctural analyse of M2 grade high speed steel during high temperature treatment, Acta mater, 46 (1998) 5207-5220.
DOI: 10.1016/s1359-6454(98)00110-4
Google Scholar
[12]
L. Costa, R. Vilar, T. Reti, R. Vilar, Rapid tooling by laser powder deposition: process simulation using finite element analysis, Acta Mater. 53 (2005) 3987-3999.
DOI: 10.1016/j.actamat.2005.05.003
Google Scholar
[13]
E. W. Kreutza, G. Backesa, A. Gasserb, K. Wissenbach, Rapid prototyping with CO2 laser radiation, Appl. Surf. Sci. 86 (1995) 310-316.
Google Scholar
[14]
M. Richard, Directed light fabrication, Adv. Mater. Processes 151 (1997) 31-35.
Google Scholar
[15]
P. Rangaswamya, M. L. Griffith, M. B. Prime, T. M. Holden, R. J. Sebring, Residual stresses in LENS components using neutron diffraction and contour method, Mater. Sci. Eng., A 399 (2005) 72-83.
DOI: 10.1016/j.msea.2005.02.019
Google Scholar
[16]
R. J. Moat, A. J. Pinkerton, L. Li, P. J. Withers, Residual stresses in laser direct metal deposited Waspaloy, Mater. Sci. Eng. 528 (2011) 2288-2298.
DOI: 10.1016/j.msea.2010.12.010
Google Scholar