Microstructure Evolution of Laser Direct Metal Deposition of M2 High Speed Steel

Article Preview

Abstract:

In the current investigation, the M2 high speed steel (HSS) sample was produced by laser direct metal deposition (DMD) with a rapid manufacturing (AM) process. The overall microstructure analysed by light optical microscopy (LOM) was a gradual transition from bottom zone to top zone due to the continuous decrease of the cooling rate. The observed microstructure from SEM and XRD was consisted of a cellular or dendritic structure of ferrite, martensite, retained austenite and fine carbides. Annealing at 860 oC led to spheroidization of carbides. The carbides were examined by XRD to be M6C and MC. With prolonging the annealing holding time, the more homogenous microstructure could be acquired. These studies demonstrated that annealing can improve microstructures of M2 HSS produced by DMD.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2198-2203

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. S. Chaus, Structural and phase transformations during the heat treatment of a cast high-chromium high-speed steel, Phys. Met. Metallogr. 106 (2008) 82-89.

DOI: 10.1134/s0031918x08070119

Google Scholar

[2] M. J. Wang, S. M. Mu, F. F. Sun, Y. Wang, Influence of rare earth elements on microstructure and mechanical properties of cast high speed steel rolls, J RARE EARTHS 25 (2007) 490-494.

DOI: 10.1016/s1002-0721(07)60462-1

Google Scholar

[3] A. S. Chaus,F. I. Rudnickii, Effect of modification on the structure and properties of cast tungsten-molybdenum high-speed steels, Met. Sci. Heat Treat. 31 (1989) 121-128.

DOI: 10.1007/bf00738146

Google Scholar

[4] X. F. Zhou, F. Fang, F. Li, J. Q. Jiang, Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel, J. Mater. Sci. 46 (2011) 1196-1202.

DOI: 10.1007/s10853-010-4895-4

Google Scholar

[5] H. Asgharzadeh, A. Simchi, Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder, Mater. Sci. Eng., A 403 (2005) 290-298.

DOI: 10.1016/j.msea.2005.05.017

Google Scholar

[6] Z. H. Liu, D.Q. Zhang, C. K. Chua, K. F. Leong, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact. 84 (2013) 72-80.

DOI: 10.1016/j.matchar.2013.07.010

Google Scholar

[7] H. J. Niu, I. T. H. Chang, Liquid phase sintering of M3/2 high speed steel by selective laser sintering, Scripta Mater. 39 (1998) 67-72.

DOI: 10.1016/s1359-6462(98)00126-2

Google Scholar

[8] G. P. Dindaa, A. K. Dasgupta, J. Mazumder, Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability, Mater. Sci. Eng., A 509 (2009) 98-104.

DOI: 10.1016/j.msea.2009.01.009

Google Scholar

[9] G. F. Sun, S. Bhattacharya, G. P. Dinda, A. Dasgupta, J. Mazumder, Influence of processing parameters on lattice parameters in laser deposited tool alloy steel, Mater. Sci. Eng., A 528 (2011) 5141-5145.

DOI: 10.1016/j.msea.2011.03.003

Google Scholar

[10] S. Bhattacharya, G. P. Dinda, A. K. Dasgupta, J. Mazumder, Microstructural evolution of AISI 4340 steel during Direct Metal Deposition process, Mater. Sci. Eng., A 528 (2011) 2309-2318.

DOI: 10.1016/j.msea.2010.11.036

Google Scholar

[11] M. R. Ghomashchi, Quantitative microstrctural analyse of M2 grade high speed steel during high temperature treatment, Acta mater, 46 (1998) 5207-5220.

DOI: 10.1016/s1359-6454(98)00110-4

Google Scholar

[12] L. Costa, R. Vilar, T. Reti, R. Vilar, Rapid tooling by laser powder deposition: process simulation using finite element analysis, Acta Mater. 53 (2005) 3987-3999.

DOI: 10.1016/j.actamat.2005.05.003

Google Scholar

[13] E. W. Kreutza, G. Backesa, A. Gasserb, K. Wissenbach, Rapid prototyping with CO2 laser radiation, Appl. Surf. Sci. 86 (1995) 310-316.

Google Scholar

[14] M. Richard, Directed light fabrication, Adv. Mater. Processes 151 (1997) 31-35.

Google Scholar

[15] P. Rangaswamya, M. L. Griffith, M. B. Prime, T. M. Holden, R. J. Sebring, Residual stresses in LENS components using neutron diffraction and contour method, Mater. Sci. Eng., A 399 (2005) 72-83.

DOI: 10.1016/j.msea.2005.02.019

Google Scholar

[16] R. J. Moat, A. J. Pinkerton, L. Li, P. J. Withers, Residual stresses in laser direct metal deposited Waspaloy, Mater. Sci. Eng. 528 (2011) 2288-2298.

DOI: 10.1016/j.msea.2010.12.010

Google Scholar