[1]
F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, (2004).
Google Scholar
[2]
S.L. Semiatin, D.U. Furrer, Fundamentals of Modeling for Metals Processing, Materials Park, in: S.L. Semiatin, D.U. Furrer (Eds. ), ASM Handbook, Vol. 22, Ohio, 2009, pp.536-552.
DOI: 10.31399/asm.hb.v22a.9781627081962
Google Scholar
[3]
S. Zherebtsov, G. Salishchev, Production, properties and application of ultrafine-grained titanium alloys, Mater. Sci. Forum 838 (2016) 294-301.
DOI: 10.4028/www.scientific.net/msf.838-839.294
Google Scholar
[4]
R. Z. Valiev, I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation, Logos, Moscow, (2000).
Google Scholar
[5]
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progr. Mater. Sci. 60 (2014) 130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[6]
A. Belyakov, S. Zherebtsov, G. Salishchev, Three-stage relationship between flow stress and dynamic grain size in titanium in a wide temperature interval, Mater. Sci. Eng. A628 (2015) 104-109.
DOI: 10.1016/j.msea.2015.01.036
Google Scholar
[7]
A. Belyakov, K. Tsuzaki, H. Miura and T. Sakai, Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation, Acta Mater. 51 (2003) 847-861.
DOI: 10.1016/s1359-6454(02)00476-7
Google Scholar
[8]
J.W. Christian, S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995) 1-157.
Google Scholar
[9]
M.A. Meyers, O. Vohringer, V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49 (2001) 4025-4039.
DOI: 10.1016/s1359-6454(01)00300-7
Google Scholar
[10]
S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S.L. Semiatin, Formation of nanostructures in commercial-purity titanium via cryorolling, Acta Mater. 61 (2013) 1167-1178.
DOI: 10.1016/j.actamat.2012.10.026
Google Scholar
[11]
S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing, Acta Mater. 59(10) (2011) 4138-4150.
DOI: 10.1016/j.actamat.2011.03.037
Google Scholar
[12]
U. Dahmen, Orientation relationships in precipitation systems, Acta Metall. 30 (1982) 63-73.
Google Scholar
[13]
A. Ambard, L. Guetaz, F. Louchet, D. Guichard, Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K, Mater. Sci. Eng. A 319-321 (2001) 404-408.
DOI: 10.1016/s0921-5093(00)02003-7
Google Scholar
[14]
S. Zherebtsov, G. Salishchev, S.L. Semiatin, Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation, Phil. Mag. Letter 90 (12) (2010) 903-914.
DOI: 10.1080/09500839.2010.521526
Google Scholar
[15]
M. Cabibbo, S. Zherebtsov, S. Mironov, G. Salishchev, Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800°C, J. Mater. Sci. 48 (2013) 1100-1110.
DOI: 10.1007/s10853-012-6842-z
Google Scholar
[16]
M. Klimova, S. Zherebtsov, G. Salishchev, S.L. Semiatin, Influence of deformation on the Burgers orientation relationship between the α and β phases in Ti–5Al–5Mo–5V–1Cr–1Fe, Mater. Sci. Eng. A 645 (2015) 292-297.
DOI: 10.1016/j.msea.2015.08.008
Google Scholar