Needle Like Fe-Containing Intermetallic Compounds of High Silicon Aluminum Alloy with Fe Modified by Mn and Ultrasonic Vibration

Article Preview

Abstract:

In this study, the modification effects and mechanism of manganese (Mn) and ultrasonic vibration (USV) on the needle-like Fe-containing intermetallic compounds of Al-20Si-xFe-2.0Cu-0.4Mg-1.0Ni (x=1, 2 wt.%) alloy have been studied respectively. The effect of Fe-containing phases on volume fraction of hard phases is also investigated. The results show that the mechanism and effect of Fe-containing intermetallic compounds improved by Mn are in close relationship with Fe content. Mn can promote to form less harmful α-Al15(Fe,Mn)3Si2 phase, or replace some Fe atoms of β-Al5FeSi and δ-Al4FeSi2 according to different Fe content. When USV was applied to this alloy containing 2%Fe near liquidus temperature, most of the acicular β phases formed in traditional process are substituted by fine plate δ phases. With the combined effects of 0.5%Mn and USV, the acicular β phases are almost repressed and the Fe-containing phases exist in form of fine Al4(Fe,Mn)Si2 and Al5(Fe,Mn)Si particles about 20~30μm. Consequently, the total volume fraction of hard phases which are composed of primary silicon particles and Fe-containing phases increases significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2286-2292

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.F. Liu, X. F Bian, Y.X. Liu, et al. Acta Metallurgica Sinica [J], 1997, 33(10): 1062-1068.

Google Scholar

[2] L. G. Hou, C. Cui, J.S. Zhang. Mater Sci Eng A [J], 2010, 527(23): 6400-6412.

Google Scholar

[3] G. Eisaabadi, P. Davami, N. Varahram, et al. Mater Sci Eng A [J], 2013, 565(10): 278-284.

Google Scholar

[4] C. Lin, S.S. Wu, S.L. Lü, et al. Intermetallics [J], 2013, 32: 176-183.

Google Scholar

[5] C.L. Chen, A. Richter, R.C. Thomson. Intermetallics [J], 2009, 17: 634-641.

Google Scholar

[6] F. Wang, J.S. Zhang, B.Q. Xiong, et al. Mater Charact [J], 2009, 60(5): 384-388.

Google Scholar

[7] A.K. Srivastava, V.C. Srivastava, A. Gloter, et al. Acta Mater [J], 2006, 54(7): 1741-1748.

Google Scholar

[8] H.J. Huang, Y.H. Cai, H. Cui, et al. Mater Sci Eng A [J], 2009, 502(1-2): 118-125.

Google Scholar

[9] S. Salem, J. Sten, S. Ingvar. Mater Sci Eng A [J], 2008, 490(1-2): 385-390.

Google Scholar

[10] N.L. Anantha, F.H. Samuel, J.E. Gruzleski. Metal Mater Trans A [J], 1994, 25(8): 1761-1773.

Google Scholar

[11] Y. Osawa, S. Takamori, T. Kimura, et al. Mater Trans [J], 2007, 48: 2467-2475.

Google Scholar

[12] Zhao J.W., S.S. Wu, L. Wan, et al. Acta Metallurgica Sinica [J], 2009, 45: 314-319.

Google Scholar

[13] G. Zhong, S.S. Wu, H.W. Jiang, et al. J Alloys Compd [J], 2010, 492: 482-487.

Google Scholar

[14] L. Anantha Narayanan, F.H. Samuel, J.E. Gruzleski. Metall Mater Trans A [J], 1994, 25(8): 1761-1773.

Google Scholar

[15] N.A. Belov, D.G. Eskin, A.A. Aksenov. Multicomponent phase diagrams: applications for commercial aluminum alloys [M]. Amsterdam; Boston: Elsevier, 2005: 15.

Google Scholar

[16] B. Yang, F. Wang, J.S. Zhang. Scripta Mater [J], 2001, 45(5): 509-515.

Google Scholar

[17] G. Zhong, S.S. Wu, H.W. Jiang, et al. Adv Mater Res [J], 2009, 79-82: 1523-1526.

Google Scholar