[1]
F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications, Catal. Today, 11 (1991) 173-301.
DOI: 10.1016/0920-5861(91)80068-k
Google Scholar
[2]
C.C. Forano, U. Prevot, V. Taviot Gueho, C., Layered Double Hydroxides (LDH), in: F. Bergaya, B.K.G. Theng, G. Lagaly (Eds. ), Handbook of clay science, Elsevier, Amsterdam, London, 2006, p.1224.
DOI: 10.1016/b978-0-08-098258-8.00025-0
Google Scholar
[3]
V. Rives, Characterisation of layered double hydroxides and their decomposition products, Mater. Chem. Phys., 75 (2002) 19-25.
Google Scholar
[4]
O. Clause, B. Rebours, E. Merlen, F. Trifiro, A. Vaccari, Preparation and Characterization of Nickel Aluminum Mixed Oxides Obtained by Thermal-Decomposition of Hydrotalcite-Type Precursors, J. Catal., 133 (1992) 231-246.
DOI: 10.1016/0021-9517(92)90200-2
Google Scholar
[5]
J. Ashok, M. Subrahmanyam, A. Venugopal, Hydrotalcite structure derived Ni-Cu-Al catalysts for the production of H-2 by CH4 decomposition, Int. J. Hydrogen Energ., 33 (2008) 2704-2713.
DOI: 10.1016/j.ijhydene.2008.03.028
Google Scholar
[6]
R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – On the effect of basicity, Catal. Today, 257 (2015).
DOI: 10.1016/j.cattod.2015.03.017
Google Scholar
[7]
D. Wierzbicki, R. Dębek, J. Szczurowski, S. Basąg, M. Włodarczyk, M. Motak, R. Baran, Copper, cobalt and manganese: Modified hydrotalcite materials as catalysts for the selective catalytic reduction of NO with ammonia. The influence of manganese concentration, Cr. Chim., 18 (2015).
DOI: 10.1016/j.crci.2015.06.009
Google Scholar
[8]
A.R. Gonzalez, Y.J.O. Asencios, E.M. Assaf, J.M. Assaf, Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcite-like precursors, Appl. Surf. Sci., 280 (2013) 876-887.
DOI: 10.1016/j.apsusc.2013.05.082
Google Scholar
[9]
O.W. Perez-Lopez, A. Senger, N.R. Marcilio, M.A. Lansarin, Effect of composition and thermal pretreatment on properties of Ni-Mg-Al catalysts for CO2 reforming of methane, App. l Catal. a-Gen., 303 (2006) 234-244.
DOI: 10.1016/j.apcata.2006.02.024
Google Scholar
[10]
M. Peters, B. Kohler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T.E. Muller, Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain, Chemsuschem, 4 (2011) 1216-1240.
DOI: 10.1002/cssc.201000447
Google Scholar
[11]
A.J. Hunt, E.H.K. Sin, R. Marriott, J.H. Clark, Generation, Capture, and Utilization of Industrial Carbon Dioxide, Chemsuschem, 3 (2010) 306-322.
DOI: 10.1002/cssc.200900169
Google Scholar
[12]
A.I. Tsyganok, K. Suzuki, S. Hamakawa, K. Takehira, T. Hayakawa, Mg-Al layered double hydroxide intercalated with [Ni(edta)](2-) chelate as a precursor for an efficient catalyst of methane reforming with carbon dioxide, Catal. Lett., 77 (2001).
DOI: 10.1246/cl.2001.24
Google Scholar
[13]
A.I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, T. Hayakawa, Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides, J. Catal., 213 (2003) 191-203.
DOI: 10.1016/s0021-9517(02)00047-7
Google Scholar
[14]
C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni-Mg-Al catalysts containing Ce for CO2 reforming of methane, Int. J. Hydrogen Energ., 36 (2011) 3886-3894.
DOI: 10.1016/j.ijhydene.2010.12.082
Google Scholar
[15]
C.E. Daza, J. Gallego, J.A. Moreno, F. Mondragon, S. Moreno, R. Molina, CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides, Catal. Today, 133 (2008) 357-366.
DOI: 10.1016/j.cattod.2007.12.081
Google Scholar
[16]
R. Dębek, K. Zubek, M. Motak, P. Da Costa, T. Grzybek, Effect of nickel incorporation into hydrotalcite-based catalyst systems for dry reforming of methane, Res. Chem. Intermed., 41 (2015) 9485-9495.
DOI: 10.1007/s11164-015-1973-x
Google Scholar
[17]
K.Y. Koo, S. -h. Lee, U.H. Jung, H. -S. Roh, W.L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance, Fuel Process. Technol., 119 (2014) 151-157.
DOI: 10.1016/j.fuproc.2013.11.005
Google Scholar
[18]
Y.H. Hu, E. Ruckenstein, Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming, Advances in Catalysis, Academic Press 2004, pp.297-345.
DOI: 10.1016/s0360-0564(04)48004-3
Google Scholar
[19]
R. Guil-Lopez, V. La Parola, M.A. Pena, J.L.G. Fierro, Evolution of the Ni-active centres into ex hydrotalcite oxide catalysts during the COx-free hydrogen production by methane decomposition, Int. J. Hydrogen Energ., 37 (2012) 7042-7055.
DOI: 10.1016/j.ijhydene.2011.11.083
Google Scholar