Relationship between the Yield Strength-Fracture Toughness Balance and the Multiscale Microstructure of a Maraging Stainless Steel for Aircraft Applications

Article Preview

Abstract:

Two grades of Fe-Cr-Ni-Al-Ti-Mo maraging steels, with a different titanium content, were investigated. Particular attention was given to the correlation between the precipitated phases and the yield strength. Synchrotron X-ray diffraction, small-angle neutron scattering and atom probe experiments were performed to determine the crystal structure, shape, size distribution, chemical composition, particle number density and volume fraction of precipitates. Both alloys show a strong increase in strength after an aging treatment, which is attributed to the co-precipitation of two different intermetallic phases. Strengthening by a single precipitation of β-Ni (Al,Ti) particles induces a saturation of yield strength around 1600 MPa above a volume fraction of 6 %. The improvement of yield strength is then obtained by introducing a nanoscale co-precipitation of η-Ni3(Ti,Al) phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

413-418

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Seetharaman, M. Sundararaman, R. Krishnan, Precipitation Hardening in a PH 13-8 Mo Stainless Steel, Mater. Sci. Eng. 47 (1981) 1–11.

DOI: 10.1016/0025-5416(81)90034-3

Google Scholar

[2] Z. Guo, W. Sha, D. Vaumousse, Microstructural evolution in a PH13-8 stainless steel after ageing, Acta Mater. 51 (2003) 101–116.

DOI: 10.1016/s1359-6454(02)00353-1

Google Scholar

[3] R. Taillard, A. Pineau, B.J. Thomas, The Precipitation of the Intermetallic Compound NiAI in Fe-19wt. %Cr Alloys, Mater. Sci. Eng. 54 (1982) 209–219.

DOI: 10.1016/0025-5416(82)90115-x

Google Scholar

[4] D.H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya, K. Hono, Microstructural evolution in 13Cr–8Ni–2. 5Mo–2Al martensitic precipitation-hardened stainless steel, Mater. Sci. Eng. A. 394 (2005) 285–295.

DOI: 10.1016/j.msea.2004.12.002

Google Scholar

[5] W. Sha, A. Cerezo, G.D.W. Smith, Phase Chimistry and Precipitation Reactions in Maraging Steels: Part II. Co-Free T-300 Steel, Metall. Trans. A. 24 (1993) 1233–1239.

DOI: 10.1007/bf02668191

Google Scholar

[6] V.M. Kardonskii, M.D. Perkas, Aging of Martensite in Fe- Ni- Mn steels, Metalloved. I Termicheskaya Obrab. Met. (1966) 7–10.

DOI: 10.1007/bf00663126

Google Scholar

[7] V.K. Vasudevan, S.J. Kim, C.M. Wayman, Precipitation Reactions and Strengthening Behavior in 18 Wt Pct Nickel Maraging Steels, Metall. Trans. A. 21 (1990) 2655–2668.

DOI: 10.1007/bf02646061

Google Scholar

[8] H. Leitner, M. Schober, R. Schnitzer, Splitting phenomenon in the precipitation evolution in an Fe–Ni–Al–Ti–Cr stainless steel, Acta Mater. 58 (2010) 1261–1269.

DOI: 10.1016/j.actamat.2009.10.030

Google Scholar

[9] A. Gemperle, J. Gemperlova, W. Sha, G.D.W. Smith, Aging behaviour of Cobalt free chromium containing maraging steels, Mater. Sci. Technol. 8 (1992) 546–554.

DOI: 10.1179/mst.1992.8.6.546

Google Scholar

[10] M.H. Mathon, C.H. de Novion, De l'intensité à la structure des matériaux, J. Phys. IV. 9 (1999) 127–146.

Google Scholar

[11] D. Delagnes, P. Lamesle, M.H. Mathon, N. Mebarki, C. Levaillant, Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel, Mater. Sci. Eng. A. 394 (2005) 435–444.

DOI: 10.1016/j.msea.2004.11.050

Google Scholar

[12] M.H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, C.H. de Novion, Experimental study and modelling of copper precipitation under electron irradiation in dilute FeCu binary alloys, J. Nucl. Mater. 245 (1997) 224–237.

DOI: 10.1016/s0022-3115(97)00010-x

Google Scholar

[13] P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, Acta Mater. 55 (2007) 4877–4889.

DOI: 10.1016/j.actamat.2007.05.004

Google Scholar

[14] M. Perrut, M. -H. Mathon, D. Delagnes, Small-angle neutron scattering of multiphase secondary hardening steels, J. Mater. Sci. 47 (2012) 1920–(1929).

DOI: 10.1007/s10853-011-5982-x

Google Scholar

[15] H. Leitner, M. Schober, R. Schnitzer, S. Zinner, Strengthening behavior of Fe–Cr–Ni–Al–(Ti) maraging steels, Mater. Sci. Eng. A. 528 (2011) 5264–5270.

DOI: 10.1016/j.msea.2011.03.058

Google Scholar

[16] M. Schober, R. Schnitzer, H. Leitner, Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel., Ultramicroscopy. 109 (2009) 553–562.

DOI: 10.1016/j.ultramic.2008.10.016

Google Scholar

[17] R. Schnitzer, S. Zinner, H. Leitner, Modeling of the yield strength of a stainless maraging steel, Scr. Mater. 62 (2010) 286–289.

DOI: 10.1016/j.scriptamat.2009.11.020

Google Scholar

[18] R. Schnitzer, R. Radis, M. Nöhrer, M. Schober, R. Hochfellner, S. Zinner, et al., Reverted austenite in PH 13-8 Mo maraging steels, Mater. Chem. Phys. 122 (2010) 138–145.

DOI: 10.1016/j.matchemphys.2010.02.058

Google Scholar

[19] W.M. Garrison, R. Strychor, A Preliminary Study of the Influence of Separate and Combined Aluminum and Nickel Additions on the Properties of a Secondary Hardening Steel, Metall. Trans. A. 19 (1988) 3103–3107.

DOI: 10.1007/bf02647739

Google Scholar

[20] S.D. Erlach, H. Leitner, M. Bischof, H. Clemens, F. Danoix, D. Lemarchand, et al., Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel, Mater. Sci. Eng. A. 429 (2006) 96–106.

DOI: 10.1016/j.msea.2006.05.071

Google Scholar