Microstructural Evolution and Mechanical Behavior of Low Density Fe-Mn-Al-C Steels with High Stacking Fault Energy

Article Preview

Abstract:

The microstructures and the mechanical properties of two Fe-26Mn-xAl-1C steels with 8 and 10 % Al have been investigated at different strain rates. The results show that Fe-26Mn-10Al-1C steel possesses higher strength and at the same time higher ductility than Fe-26Mn-8Al-1C steel at both low and high strain rates. The strengths of the steels increase and ductility declines slightly with increasing strain rate. These observations can be attributed to the different strain hardening mechanisms acting at different strain rates. Planar slip occurs and microbands form duringthe steady state stage, whereas deformation twinning occurs in the final stage ofdeformation. The higher strain hardening at high strain rates are due to the strong increase in the twinning propensity. The strain hardening at high strain rates also depends on the adiabatic heating, causing a competition between softening and strain hardening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

436-441

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Frommeyer, U. Brux, Steel Research Int. 77 (2006): 627-631.

Google Scholar

[2] J.D. Yoo, K.T. Park, Mater. Sci. Eng. A 496(2008)417-424.

Google Scholar

[3] H. Ding, H.Y. Li, Z.Q. Wu, et al, Steel research int. 84(2013)1288-1292.

Google Scholar

[4] S.W. Hwang, J.H. Ji, K-T Park, Mater. Sci. Eng. A 528 (2011)7267-7275.

Google Scholar

[5] J.D. Yoo, S.W. Hwang, K.T. Park, Mater. Sci. Eng. A 508 (2009)234-240.

Google Scholar

[6] K.T. Park, K.J. Jin, S.H. Han, S.W. Hwang, K. Choi, C.S. Lee, Mater. Sci. Eng. A 527(2010)3651-3661.

Google Scholar

[7] L.F. Zhang, R.B. Song, C. Zhao, F.Q. Yang, Mater. Sci. Eng. A 640(2015)225-234.

Google Scholar

[8] I. Gutierrez-Urrutia, D. Raabe, Scripta Mater. 68 (2013) 343–347.

Google Scholar

[9] J. Bohle, F. Chmelı́k, P. Dobroň, F. Kaiser, D. Letzig, P. Lukáč, K.U. Kainer Chmelic Alloys Compd, 378(2004)207.

DOI: 10.1016/j.jallcom.2003.10.102

Google Scholar

[10] J.X. Liu, S.K. Li, X.Q. Zhou, Z.H. Zhang, H.Y. Zheng, Y.C. Wang, Scripta Mater. 59(2008): 1271.

Google Scholar

[11] S. Curtze, V-T. Kuokkala, Acta. Mater. 58(2010)5129-5141.

Google Scholar

[12] K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, T. Nishizawa, ISIJ Int. 30(1990) 680-686.

DOI: 10.2355/isijinternational.30.680

Google Scholar

[13] N. Li, Y.D. Wang, R.L. Oeng, X. Sun, P.K. Liaw, G.L. Wu, L. Wang, H.N. Cai, Acta Mater. 59(2011)6369-6377.

Google Scholar

[14] Z.P. Xiong, X.P. Ren, W.P. Bao, S.X. Li, H.T. QU, Mater. Sci. Eng. A 530(2011)426-431.

Google Scholar