[1]
S.G. Chowdhury, A. Mondal, J. Gubicza, et al., Evolution of microstructure and texture in an ultrafine-grained A16082 alloy during severe plastic deformation, Mat Sci Eng a-Struct. 490 (2008) 335-42.
DOI: 10.1016/j.msea.2008.01.049
Google Scholar
[2]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782-817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[3]
Y. Saito, N. Tsuji, H. Utsunomiya, et al., Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater. 39 (1998) 1221-7.
DOI: 10.1016/s1359-6462(98)00302-9
Google Scholar
[4]
J. Scharnweber, W. Skrotzki, C.G. Oertel, et al., Texture, Microstructure and Mechanical Properties of Ultrafine Grained Aluminum Produced by Accumulative Roll Bonding, Adv Eng Mater. 12 (2010) 989-94.
DOI: 10.1002/adem.201000067
Google Scholar
[5]
F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, second ed., Elsevier Science Ltd., Oxford, United Kingdom, (2004).
Google Scholar
[6]
N. Afrin, M.Z. Quadir, W. Xu, M. Ferry, Spatial orientations and structural irregularities associated with the formation of microbands in a cold deformed Goss oriented Ni single crystal, Acta Mater. 60 (2012) 6288-6300.
DOI: 10.1016/j.actamat.2012.08.003
Google Scholar
[7]
D.A. Hughes, N. Hansen, High angle boundaries formed by grain subdivision mechanisms, Acta Mater. 45 (1997) 3871-3886.
DOI: 10.1016/s1359-6454(97)00027-x
Google Scholar
[8]
T. Sakai, A. Belyakov, R. Kaibyshev, et al., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science. 60 (2014) 130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[9]
K.D. Lau, Development of Microstructure and Texture in Accumulative Roll Bonded Commercial Purity Aluminium, ME thesis, UNSW, (2011).
Google Scholar
[10]
J. Hirsch, K. Lucke, Mechanism of deformation and development of rolling textures in polycrystalline fcc metals 3, Acta Metallurgica. 36 (1988) 2863-2882.
Google Scholar
[11]
N. Kamikawa, T. Sakai, N. Tsuji, Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel, Acta Mater. 55 (2007) 5873-5888.
DOI: 10.1016/j.actamat.2007.07.002
Google Scholar
[12]
Y.B. Zhang, O.V. Mishin, A. Godfrey, Analysis of through-thickness heterogeneities of microstructure and texture in nickel after accumulative roll bonding, J Mater Sci. 49 (2013) 287-293.
DOI: 10.1007/s10853-013-7703-0
Google Scholar
[13]
K. Tirsatine, H. Azzeddine, T. Baudin, et al., Texture and microstructure evolution of Fe-Ni alloy after accumulative roll bonding, J. Alloy. Compd. 610 (2014) 352-360.
DOI: 10.1016/j.jallcom.2014.04.173
Google Scholar
[14]
J. Hirsch, K. Lucke, Mechanism of deformation and development of rolling textures in polycrystalline fcc metals 2, Acta Metallurgica, 36 (1988) 2883-2904.
Google Scholar