The Microstructural Criterion for Creep Strength Breakdown in a 10%Cr Martensitic Steel

Article Preview

Abstract:

A 10%Cr martensitic steel with 3%Co and 0.008%B tempered at 770°C exhibits no creep strength breakdown at a temperature of 650°C up to an extremely high rupture time of ∼4×104 h under an applied stress of 120 MPa. The minimum creep rate was ∼3×10-11 s-1. Microstructural characterization showed that superior creep resistance associated with a high stability of tempered martensite lath structure. Boundary M23(B⋅C)6 phase particles are highly stable against coarsening under long-term aging and creep conditions. These particles retain their orientation relationship with ferritic matrix unchanged under creep at a temperature of 650°C. As a result, no migration of lath boundaries and their transformation to subboundaries diminishing the long-range elastic stress fields take place. The role of M(C,N) carbonitrides in achieving extraordinary high creep strength consists in hindering the knitting reaction between mobile lattice dislocations and lath boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-470

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Abe, T. -U. Kern, R. Viswanathan Creep-resistant steels. Woodhead Publishing, Cambridge, 2008, 669 p.

Google Scholar

[2] R.O. Kaybyshev, V.N. Skorobogatykh, I.A. Shchenkova, New martensitic steels for fossil power plant: creep resistance, Phys. Met. Met. 109 (2010) 186–200.

DOI: 10.1134/s0031918x10020110

Google Scholar

[3] J.S. Lee, H. Gh. Armaki, K. Maruyama, T. Muraki, H. Asahi, Causes of breakdown of creep strength in 9Cr-1. 8W-0. 5Mo-VNb steel, Mater. Sci. Eng. A 428 (2006) 270–275.

DOI: 10.1016/j.msea.2006.05.010

Google Scholar

[4] W. Bendick, L. Cipolla, J. Gabrel, J. Hald, New ECCC assessment of creep rupture strength for steel grade X10CrMoVNb9-1 (Grade 91), Int. J. Press. Vessel. Pip. 87 (2010) 304-309.

DOI: 10.1016/j.ijpvp.2010.03.010

Google Scholar

[5] M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H. Gh. Armaki, K. Maruyama, Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants, Mater. Sci. Eng. A 510–511 (2009).

DOI: 10.1016/j.msea.2008.05.055

Google Scholar

[6] A. Fedoseeva, N. Dudova, R. Kaibyshev, Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel, Mater. Sci. Eng. A 654 (2016) 1-12.

DOI: 10.1016/j.msea.2015.12.027

Google Scholar

[7] R. Kaibyshev, R. Mishnev, E. Tkachev, N. Dudova, Effect of Ni and Mn on the creep behavior of 9-10%Cr steels with low N and high B, Trans. Indian Inst. Met. 69 (2016) 203-210.

DOI: 10.1007/s12666-015-0761-z

Google Scholar

[8] H. Semba, F. Abe, Alloy design and creep strength of advanced 9%Cr USC boiler steels containing high concentration of boron, Energy Mater. 1 (2006) 238-244.

DOI: 10.1179/174892406x173611

Google Scholar

[9] M. Tabuchi, H. Hongo, F. Abe, Creep strength of dissimilar welded joints using high B-9Cr steel for advanced USC boiler, Metall. Mater. Trans. A 45 (2014) 5068-5075.

DOI: 10.1007/s11661-014-2471-2

Google Scholar

[10] Y. Liu, S. Tsukamoto, K. Sawada, M. Tabuchi, F. Abe, Precipitation behaviour in Ac3 HAZ simulated B steel during PWHT and creep deformation, Metal. Mater. Trans. A 46 (2015) 1843-1854.

DOI: 10.1007/s11661-015-2802-y

Google Scholar

[11] N. Dudova, R. Mishnev, R. Kaibyshev, Effect of tempering on microstructure and mechanical properties of boron containing 10%Cr steel, ISIJ Int. 51 (2011) 1912-(1918).

DOI: 10.2355/isijinternational.51.1912

Google Scholar

[12] K. Kimura, K. Sawada, H. Kushima, K. Kubo, Effect of stress on creep deformation property of ASME Grade P92/T92 steels, Int. J. Mat. Res. 99 (2008) 395-401.

DOI: 10.3139/146.101651

Google Scholar

[13] P.R. Howell, J.V. Bee and R.W.K. Honeycombe, The crystallography of the austenite-ferrite/carbide transformation in Fe-Cr-C alloys, Metall. Trans. A 10 (1979) 1213-1222.

DOI: 10.1007/bf02811976

Google Scholar