Nanocomposites Consisting of Carbon Nanotubes and Nanoparticles of Noble Metals

Article Preview

Abstract:

In the framework of the made researches nanocomposite of CNT-NPs type (Carbon Nanotube-Nanoparticles) consisting of multiwalled carbon nanotubes coated by rhodium nanoparticles and/or palladium using the two-step indirect method: chemical reduction have been produced. In the researches high-quality multi-walled carbon nanotubes MWCNTs with a length of 100 to 500 nm and a diameter of 8 to 20 nm previously obtained in the catalytic-chemical vapour deposition CCVD have been used. Nanotubes produced within the framework of own researches contain minor amounts of metallic impurities and amorphous carbon deposits. In order to deposit the noble metal nanoparticles on the surface of carbon nanotubes functionalization of multi-walled carbon nanotubes in a mixture of H2SO4 and HNO3 acids have been used. The prepared material has been subjected chemical reduction using noble metal precursors (RhCI3, PdCl2). The characterization of the produced material including the examination of the structure, morphology, chemical composition and evaluation of the size and distribution of rhodium and/or palladium nanoparticles on the surface of carbon nanotubes has been performed using: scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS). The produced nanomaterials may be used as the active layer of sensors of chemical/biological agents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

442-447

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato L, D.M. Guldie, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry 17 (2007) 2679-2694.

DOI: 10.1039/b700857k

Google Scholar

[2] X. Peng, J. Chen, J. A. Misewich, S.S. Wong, Carbon nanotube–nanocrystal heterostructures, Chemical Society Reviews 38/4 (2009) 1076-1098.

DOI: 10.1039/b811424m

Google Scholar

[3] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Carbon nanotubes decorating methods, Archives of Materials Science and Engineering 61/2 (2013) 53-61.

Google Scholar

[4] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, Synthesis and characterization of Pt/MWCNTs nanocomposites, Physica status solidi (b) 250/12 (2013) 2569-2574.

DOI: 10.1002/pssb.201300083

Google Scholar

[5] M. Belesi, I. Panagiotopoulos, S. Pal, S. Hariharan, D. Tsitrouli, G. Papavassiliou, D. Niarchos, N. Boukos, M. Fardis, V. Tzitzios, Decoration of Carbon Nanotubes with CoO and Co Nanoparticles, Journal of Nanomaterials, vol. 2011, Article ID 320516, 9 pages, 2011. doi: 10. 1155/2011/320516.

DOI: 10.1155/2011/320516

Google Scholar

[6] A.D. Dobrzańska-Danikiewicz, W. Wolany, D. Łukowiec, D. Cichocki, M. Burda, Various forms of platinum deposited on carbon nanotubes, Archives of Materials Science and Engineering 75/2 (2015) 53-62.

DOI: 10.1515/amm-2015-0347

Google Scholar

[7] B. Yoon, H.B. Pan, C. M. Wai, Relative Catalytic Activities of Carbon Nanotube-Supported Metallic Nanoparticles for Room-Temperature Hydrogenation of Benzene, J. Phys. Chem. C 113/4 (2009) 1520-1525.

DOI: 10.1021/jp809366w

Google Scholar

[8] L. Li, Y. Xing, Pt−Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts, J. Phys. Chem. C 111/6 (2007) 2803-2808.

DOI: 10.1021/jp0655470

Google Scholar

[9] S.H. Park, H.M. Jung, S.K. Um, Y.W. Song, H.S. Kim, Pt-based alloy nanoparticles/CNT composite for high performance direct methanol fuel cell, Proceedings of ICCM18 (2011).

Google Scholar

[10] R. Leghrib, T. Dufour, F. Demoisson, N. Claessens, F. Reniers, E. Llobet, Gas sensing properties of multiwall carbon nanotubes decorated with rhodium Nanoparticles, Sensors and Actuators B 160 (2011) 974-980.

DOI: 10.1016/j.snb.2011.09.014

Google Scholar

[11] US Patent 2012/0097886.

Google Scholar

[12] US Patent 2007/0199826 A1.

Google Scholar

[13] N. Karousis G. -E, Tsotsou, F. Evangelista, P. Rudolf, N. Ragoussis, N. Tagmatarchis, Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity. J. Phys. Chem. C 112, (2008) 13463-13469.

DOI: 10.1021/jp802920k

Google Scholar

[14] B. Wu, Y. Kuang, X. Zhang, J. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications, Nano Today 6 (2011) 75-90.

DOI: 10.1016/j.nantod.2010.12.008

Google Scholar

[15] A.D. Dobrzańska-Danikiewicz, D. Cichocki, D. Łukowiec, Obtaining and description of the MWCNTs-Pd nanocomposite, Archives of Materials Science and Engineering 74/1 (2015) 15-22.

DOI: 10.1515/amm-2015-0259

Google Scholar

[16] T. Tago, Y. Shibata, T. Hatsuta, K. MIyajima, M. Kishida, S. Tashiro, K. Wakabayashi, Synthesis of silica-coated rhodium nanoparticles in reversed micellar solution, Journal of Materials Science 37 (2002) 977– 982.

DOI: 10.1023/a:1014351915149

Google Scholar

[17] M. Ugalde, E. Chavira, M.T. Ochoa-Lara, I. A. Figueroa, C. Quintanar, A. Tejeda, Synthesis by Microwaves of Bimetallic Nano-Rhodium-Palladium, Journal of Nanotechnology, vol. 2013, Article ID 578684, 9 pages, 2013. doi: 10. 1155/2013/578684.

DOI: 10.1155/2013/578684

Google Scholar

[18] M. E. Grass, Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts, Proquest.

Google Scholar

[19] F. P. Zamborini, S. M. Gross, R. W. Murray, Synthesis, Characterization, Reactivity, and Electrochemistry of Palladium Monolayer Protected Clusters, Langmuir 2001, 17, 481-488.

DOI: 10.1021/la0010525

Google Scholar

[20] M. Han, D. Jung, G. S. Lee, Palladium-nanoparticle-coated carbon nanotube gas sensor, Chemical Physics Letters 610–611 (2014) 261-266.

DOI: 10.1016/j.cplett.2014.07.053

Google Scholar