Elastoplastic Deformation and Damage Process in Duplex Steel Studied Using Synchrotron and Neutron Diffraction

Article Preview

Abstract:

In the present work, the mechanical behavior of phases in duplex steel during tensile test was studied. Special interest was taken in the analysis of damage process just before failure. In this aim two diffraction methods: in-situ time of flight neutron diffraction and X-ray synchrotron diffraction were applied. Using diffraction data, the slip mechanism on crystallographic planes during plastic deformation was investigated. In the case of aged UR45N steel, it was found that significant softening caused by damage process was initiated in the ferritic phase. The lattice strains measured in situ by two above mentioned diffraction methods were compared with prediction of the self-consistent model.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Baczmański, K. Wierzbanowski, C. Braham, A. Lodini, Arch. Metall. 44 (1999) 39-50.

Google Scholar

[2] A. Baczmański, C. Braham, Acta. Metall. 52 (2004) 1133-1142.

Google Scholar

[3] A. Baczmański, C. Braham, W. Seiler, Phys. Stat. Sol. A. 201 (2004) 2886-2899.

Google Scholar

[4] A. Baczmański, C. Braham, W. Seiler, Philos Mag. 83 (2003) 3225-3246.

Google Scholar

[5] S. Wroński, A. Baczmański, R. Dakhlaoui, C. Braham, K. Wierzbanowski, E.C. Oliver Acta Mater. 55 (2007) 6219–6233.

DOI: 10.1016/j.actamat.2007.07.044

Google Scholar

[6] A. Baczmański, J. Le Joncour, B. Panicaud, M. Francois, C. Braham, A. Paradowska, S. Wroński, S. Amara, R. and Chiron. J. Appl. Cryst. 44 (2011) 966-982.

DOI: 10.1107/s0021889811025957

Google Scholar

[7] P. Lipinski, M. Berveiller, E. Reubrez, J. Morreale, J. Arch. Appl. Mech. 65 (1995) 291–311.

DOI: 10.1007/bf00789222

Google Scholar

[8] P. Zattarin, A. Baczmański, P. Lipinski, K. Wierzbanowski, Arch. Metall. 45 (2000) 163-184.

Google Scholar

[9] B. Panicaud, K. Saanouni, A. Baczmański, M. François, L. Cauvin, L. Le Joncour. Comp. Mat. Sci. 50 (2011) 1908–(1916).

DOI: 10.1016/j.commatsci.2011.01.038

Google Scholar

[10] J.S. Kallend, U.F. Kocks, A.D. Rollet, H.R. Wenk, Operational Texture Analysis, Raport LA-UR-90-2852, Center for Material Sciences, Los Alamos National Laboratory, USA. (1990).

Google Scholar

[11] K. Inal, P. Gergaud, M. Francois, J-L. Lebrun, Scand. J. Metall. 28 (1999) 139-150.

Google Scholar

[12] G. Simoms and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd edition, The M.I.T. Press, Cambridge, Massachusetts and London, (1971).

Google Scholar

[13] J. Santisteban, J. James, M. Daymond, L. Edwards, J. Appl. Cryst. 39 (2006) 812-825.

Google Scholar

[14] J.E. Daniels and M. Drakopoulos, Synchrotron Rad. 6 (2009) 463-468.

Google Scholar

[15] A.P. Hammersley,  S.O. Svensson,  M. Hanfland, S.O. Fitch, D. Häusermann, High Pressure Research. 14 (1996) 235-248.

Google Scholar

[16] S. Merkel, Multifit/ Polydefix Polycrystal Deformation using X-rays. (2011). Information on https: /code. google. com/p/multifit-polydefix.

DOI: 10.1107/s1600576715010390

Google Scholar

[17] P. Thompson, D. E. Cox, J. B. Hastings, J. Appl. Cryst. 20 (1987) 79-83.

Google Scholar

[18] C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, J.J. Jonas, Acta. Metall. 32 (1984) 1637–1653.

DOI: 10.1016/0001-6160(84)90222-0

Google Scholar

[19] N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, Y.D. Wang, Acta. Mater. 57 (2009) 3965–3977.

Google Scholar