Deformation Heterogeneity Study of a 6061-T6 Aluminum Alloy Processed by Equal Channel Angular Pressing

Article Preview

Abstract:

Among the severe plastic deformation techniques, the equal channel angular pressing (ECAP) has drastically improved the mechanical properties of the processed alloys. However, information regarding friction phenomenon, which modifies the deformation at the surface and the heterogeneity microstrain state produced by the process itself, is still scarce. In the present work, the deformation heterogeneity and the friction effect, at the surface in the bulk material of the 6061-T6 aluminum alloy processed by ECAP, is presented and discussed. The residual stress (RS) measurements were performed by means of X-Ray diffraction. By means of synchrotron diffraction, volumetric sections of the ECAPed samples were characterized. Finite element analysis showed a good agreement with the experimentally obtained residual stress and microhardness mapping results. The study also showed that the highest deformation zones were located at the outer parts of the deformed samples (top and bottom), while the inner zone showed strain oscillations of up to 49±2 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-45

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Z. Valiev and T. G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51 (2006) 881–981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[2] C. Reyes-Ruiz, I. A. Figueroa, C. Braham, J. M. Cabrera, I. Alfonso, and G. Gonzalez, Texture and lattice distortion study of an Al-6061-T6 alloy produced by ECAP, Mater. Trans. Article in press.

DOI: 10.2320/matertrans.m2015200

Google Scholar

[3] M. A. Meyers, A. Mishra, and D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci., 51 (2006) 427–556.

Google Scholar

[4] G. Gonzalez, C. Braham, J. L. Lebrun, Y. Chastel, W. Seiler, and I. A. Figueroa, Microstructure and Texture of Al 2Si x Sn ( x = 0 , 4 , 8 mass % ) Alloys Processed by Equal Channel Angular Pressing, Mater. Trans., 53 (2012) 1234–1239.

DOI: 10.2320/matertrans.m2012011

Google Scholar

[5] S. N. Alhajeri, N. Gao, and T. G. Langdon, Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP, Mater. Sci. Eng. A, 528, (2011) 3833–3840.

DOI: 10.1016/j.msea.2011.01.074

Google Scholar

[6] A. P. Zhilyaev, D. L. Swisher, K. Oh-ishi, T. G. Langdon, and T. R. McNelley, Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP, Mater. Sci. Eng. A, 429 (2006) 137–148.

DOI: 10.1016/j.msea.2006.08.001

Google Scholar

[7] C. Hernandez, I. A. Figueroa, I. Alfonso, C. Braham, P. Castillo, and G. Gonzalez, Microstructure and texture evolution of the Al-20sn alloy procesed by equal-channel angular pressing using route C, Mater. Trans., 56 (2015) 40–45.

DOI: 10.2320/matertrans.m2014225

Google Scholar

[8] F. Djavanroodi, B. Omranpour, M. Ebrahimi, and M. Sedighi, Designing of ECAP parameters based on strain distribution uniformity, Prog. Nat. Sci. Mater. Int., 22 (2012) 452–460.

DOI: 10.1016/j.pnsc.2012.08.001

Google Scholar

[9] S. K. Lu, H. Y. Liu, L. Yu, Y. L. Jiang, and J. H. Su, 3D FEM simulations for the homogeneity of plastic deformation in aluminum alloy HS6061-T6 during ECAP, Procedia Eng., 12 (2011) 35–40.

DOI: 10.1016/j.proeng.2011.05.007

Google Scholar

[10] F. Cioffi, J. I. Hidalgo, R. Fernández, T. Pirling, B. Fernández, D. Gesto, I. Puente Orench, P. Rey, and G. González-Doncel, Analysis of the unstressed lattice spacing, d0, for the determination of the residual stress in a friction stir welded plate of an age-hardenable aluminum alloy - Use of equilibrium conditions and a genetic algorithm, Acta Mater., 74 (2014).

DOI: 10.1016/j.actamat.2014.04.035

Google Scholar

[11] M. Mahmoodi, M. Sedighi, and D. a. Tanner, Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction, Mater. Des., 40 (2012) 516–520.

DOI: 10.1016/j.matdes.2012.03.029

Google Scholar

[12] I. -F. Lee, T. Q. Phan, L. E. Levine, J. Z. Tischler, P. T. Geantil, Y. Huang, T. G. Langdon, and M. E. Kassner, Using X-ray microbeam diffraction to study the long-range internal stresses in aluminum processed by ECAP, Acta Mater., 61(2013).

DOI: 10.1016/j.actamat.2013.09.013

Google Scholar

[13] A. Wanner and D. C. Dunand, Synchrotron X-ray study of bulk lattice strains in externally loaded Cu-Mo composites, Metall. Mater. Trans. A, 31 (2000) 2949–2962.

DOI: 10.1007/bf02830344

Google Scholar

[14] J. Romero, M. Preuss, and J. Quinta da Fonseca, Capturing the texture changes in a zirconium alloy during the allotropic phase transformation, Scr. Mater., 61 (2009) 399–402.

DOI: 10.1016/j.scriptamat.2009.04.031

Google Scholar

[15] A. P. Hammersley, S. O. Svensson, M. Hanfland, a. N. Fitch, and D. Hausermann, Two-dimensional detector software: From real detector to idealised image or two-theta scan, High Press. Res., 14 (1996) 235–248.

DOI: 10.1080/08957959608201408

Google Scholar

[16] ABAQUS Inc., ABAQUS 6. 9 Analysis User's Manual.

Google Scholar

[17] E. Cerri, P. P. De Marco, and P. Leo, FEM and metallurgical analysis of modified 6082 aluminium alloys processed by multipass ECAP: Influence of material properties and different process settings on induced plastic strain, J. Mater. Process. Technol., 209 (2009).

DOI: 10.1016/j.jmatprotec.2008.04.013

Google Scholar

[18] C. Xu, M. Furukawa, Z. Horita, and T. G. Langdon, The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP, Mater. Sci. Eng. A, 398 (2005) 66–76.

DOI: 10.1016/j.msea.2005.03.083

Google Scholar

[19] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scr. Mater., 35 (1996) 143–146.

DOI: 10.1016/1359-6462(96)00107-8

Google Scholar