Microstructure and Residual Stress in T40 Titanium after Tensile Test

Article Preview

Abstract:

The goal work of this work is to describe the qualitative and quantitative behaviour of titanium T40 during tensile test. Material characteristics were determined using EBSD and X-ray techniques. Textures, twin boundary fractions, residual stresses and coherent domain size were determined. It was found that deformation mechanisms and microstructure characteristics are different in the samples stretched along rolling and transverse directions. For example the average grain size, as determined from EBSD measurements, is higher in the sample stretched along rolling direction. Also smaller coherent domains form and residual stress is more easily relaxed in this sample. A strong appearance of tensile twins was observed in the samples deformed along transverse direction. In the present paper a complex study of material characteristics and deformation mechanisms is presented. A special emphasis is done on residual stress characteristics determined in the samples stretched in two perpendicular directions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.N. Reid, Deformation geometry for material scientists, Oxford: Pergamon Press (1973).

Google Scholar

[2] K. Wierzbanowski, A. Baczmanski, P. Lipinski and A. Lodini, Elasto-plastic models of polycrystalline material deformation and their applications, Arch. Metall. Mater., 52 (2007) 77-86.

Google Scholar

[3] S. Wroński, K. Wierzbanowski, B. Bacroix, M. Wróbel, E. Rauch, F. Montheillet, M. Wronski, Texture heterogeneity of asymmetrically rolled low carbon steel, Arch. Metall. Mater., 54 (2009) 89-102.

DOI: 10.4028/www.scientific.net/amr.996.688

Google Scholar

[4] Y.N. Wang, J.C. Huang, Texture analysis in hexagonal materials, Mater. Chem. Phys., 81 (2003) 11-26.

Google Scholar

[5] M.J. Philippe, M. Serghat, P. Van Houtte, C. Esling, Modelling of texture evolution for materials of hexagonal symmetry—II. application to zirconium and titanium α or near α alloys, Acta Metall. Mater., 43 (1995) 1619-1630.

DOI: 10.1016/0956-7151(94)00329-g

Google Scholar

[6] S. Wang, Y. Zhang, Ch. Schuman, J. -S. Lecomte, X. Zhao, L. Zuo, M. -J. Philippe, C. Esling, Study of twinning/detwinning behaviors of Ti by interrupted in situ tensile tests, Acta Mater., 82 (2015) 424–436.

DOI: 10.1016/j.actamat.2014.09.038

Google Scholar

[7] A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J. -S. Lecomte,T. Richeton, K.E.K. Amouzou, Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions, Mat. Sci. Eng. A, 596 (2014) 236–243.

DOI: 10.1016/j.msea.2013.12.061

Google Scholar

[8] K.E.K. Amouzou , T. Richeton , A. Roth, M.A. Lebyodkin, T.A. Lebedkina, Micromechanical modeling of hardening mechanisms in commercially pure a-titanium in tensile condition, Int. J. Plasticity, 80 (2016) 222-240.

DOI: 10.1016/j.ijplas.2015.09.008

Google Scholar

[9] B. Barkia, V. Doquet, J.P. Couzinié, I. Guillot, E. Héripré, In situ monitoring of the deformation mechanisms in titanium with different oxygen contents, Mat. Sci. Eng. A, 636 (2015) 91–102.

DOI: 10.1016/j.msea.2015.03.044

Google Scholar

[10] B. Barkia, V. Doquet, E. Héripré, I. Guillot, Characterization and analysis of deformation heterogeneities in commercial purity titanium, Mater. Charact., 108 (2015) 94–101.

DOI: 10.1016/j.matchar.2015.09.001

Google Scholar

[11] H.J. Bunge, Texture Analysis in Material Science, pp.3-41, Butterworths, London (1982).

Google Scholar

[12] J. Tarasiuk, K. Wierzbanowski, A. Baczmanski, New Algorithm of Direct Method of Texture Analysis, Cryst. Res. Technol., 33 (1998) 101- 118.

DOI: 10.1002/(sici)1521-4079(1998)33:1<101::aid-crat101>3.0.co;2-7

Google Scholar

[13] N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, B. Bacroix, Micromechanical modelling of monotonic loading of CP α-Ti: Correlation between macroscopic and microscopic behaviour, Mat. Sci. Eng. A-struct, 573 (2013) 222–233.

DOI: 10.1016/j.msea.2013.02.022

Google Scholar

[14] S. Yu. Mironov, G. A. Salishchev, M. M. Myshlyaev, R. Pippan, Evolution of misorientation distribution during warm abc, forging of commercial-purity titanium, Mat. Sci. Eng. A-struct., 418 (2006) 257–267.

DOI: 10.1016/j.msea.2005.11.026

Google Scholar

[15] S. Wronski, K. Wierzbanowski, M. Jędrychowski, J. Tarasiuk, M. Wronski, A. Baczmanski, B. Bacroix, Microstructure evolution of titanium after tensile test, Mat. Sci. Eng. A, 656 (2016) 1–11.

DOI: 10.1016/j.msea.2015.12.041

Google Scholar

[16] A. Baczmanski, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, A. Lodini, Anisotropy of Micro-Stresses Measured by Diffraction, Rev. Metall. - Paris, 94 (1997) 1467- 1474.

DOI: 10.1051/metal/199794121467

Google Scholar

[17] A. Baczmanski, A. Tidu, P. Lipinski, M. Humbert, and K. Wierzbanowski, New Type of Diffraction Elastic Constants for Stress Determination, Mater. Sci. Forum, 524-525 (2006) 235-240.

DOI: 10.4028/www.scientific.net/msf.524-525.235

Google Scholar

[18] S. Wronski, M. Wrobel, A. Baczmanski, K. Wierzbanowski, Effects of cross-rolling on residual stress, texture and plastic anisotropy in f. c. c. and b. c. c. metals, Mater. Charact., 77 (2013) 116 – 126.

DOI: 10.1016/j.matchar.2013.01.005

Google Scholar

[19] G.K. Williamson, W.H. Hall, X-ray line broadening from filed Al and W, Acta Metall., 1 (1953) 22-31.

Google Scholar

[20] J.D. Martin, Using XPowder: A software package for Powder X-Ray diffraction analysis, www. xpowder. com 2004; D.L. GR 1001/04. ISBN 84-609-1497-6.

Google Scholar