Research on Lead (II) Adsorption Mechanism from Aqueous Solution by Calcium Carbonate Modified Diatomite Absorbent

Article Preview

Abstract:

In this study, calcium carbonate was used to coat and link the surface of diatomite for the formation of a novel modified adsorbent (referred to as Ca–diatomite). Various analytical techniques were used to characterize structure and mechanisms of modification and adsorption process, like Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). Results showed that that Calcium carbonate had been successful grafted onto the surface of diatomite after modification, and Calcium carbonate modification improved the adsorption performance of diatomite for the removal of lead (II) ions from aqueous solution. Ca–diatomite adsorption isotherms and adsorption kinetics were also been studied. The adsorption isotherms and the kinetic data were best fitted with the Langmuir model and pseudo-second-order kinetics, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-28

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Khraisheh, Y. Aldegs, W. McMinn, Remediation of wastewater containing heavy metals using raw and modified diatomite, Chem. Eng. J., 99 (2004) 177-184.

DOI: 10.1016/j.cej.2003.11.029

Google Scholar

[2] H. Beheshti, M. Irani, Removal of lead(II) ions from aqueous solutions using diatomite nanoparticles, Desalination and Water Treatment, 57 (2015) 18799-18805.

DOI: 10.1080/19443994.2015.1095683

Google Scholar

[3] M. Irani, M. Amjadi, M.A. Mousavian, Comparative study of lead sorption onto natural perlite, dolomite and diatomite, Chem. Eng. J., 178 (2011) 317-323.

DOI: 10.1016/j.cej.2011.10.011

Google Scholar

[4] Z. Jia, X. Duan, P. Qin, W. Zhang, W. Wang, C. Yang, H. Sun, S. Wang, L.C. Zhang, Disordered atomic packing structure of metallic glass: toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance, Adv. Funct. Mater., 27 (2017).

DOI: 10.1002/adfm.201702258

Google Scholar

[5] S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV–Vis light, Materials & Design, 119 (2017) 244-253.

DOI: 10.1016/j.matdes.2017.01.039

Google Scholar

[6] Z. Jia, W.C. Zhang, W.M. Wang, D. Habibi, L.C. Zhang, Amorphous Fe 78 Si 9 B 13 alloy: An efficient and reusable photo-enhanced Fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under UV–vis light, Applied Catalysis B: Environmental, 192 (2016).

DOI: 10.1016/j.apcatb.2016.03.048

Google Scholar

[7] Y. Al-Degs, M. Khraisheh, M. Tutunji, Sorption of lead ions on diatomite and manganese oxides modified diatomite, Water Res., 35 (2001) 3724-3728.

DOI: 10.1016/s0043-1354(01)00071-9

Google Scholar

[8] R. Liu, Y. Lu, X. Shen, Q. Liang, Q. Wang, Arsenic (V) adsorption from aqueous solution on magnetic Fe0. 2 (Co20Ni80) 0.8 alloy porous microfibers, Water, Air, Soil Pollut., 223 (2012) 5365-5373.

DOI: 10.1007/s11270-012-1286-2

Google Scholar

[9] B. Hameed, J. Salman, A. Ahmad, Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121-126.

DOI: 10.1016/j.jhazmat.2008.06.069

Google Scholar

[10] M. Khraisheh, M. Al-Ghouti, S. Allen, M. Ahmad, Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite, Water Research, 39 (2005) 922-932.

DOI: 10.1016/j.watres.2004.12.008

Google Scholar

[11] N. Caliskan, E. Sogut, C. Saka, Y. Yardim, Z. Senturk, The Natural Diatomite from Caldiran-Van (Turkey): Electroanalytical Application to Antimigraine Compound Naratriptan at Modified Carbon Paste Electrode, Combinatorial Chemistry & High Throughput Screening, 13 (2010).

DOI: 10.2174/138620710791920356

Google Scholar

[12] B. Bahramian, F.D. Ardejani, V. Mirkhani, K. Badii, Diatomite-supported manganese Schiff base: An efficient catalyst for oxidation of hydrocarbons, Applied Catalysis A: General, 345 (2008) 97-103.

DOI: 10.1016/j.apcata.2008.04.028

Google Scholar

[13] M. Safa, M. Larouci, B. Meddah, P. Valemens, The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria, Water Sci. Technol., 65 (2012) 1729-1737.

DOI: 10.2166/wst.2012.183

Google Scholar

[14] J.U.K. Oubagaranadin, Z. Murthy, Adsorption of divalent lead on a montmorillonite− illite type of clay, Industrial & Engineering Chemistry Research, 48 (2009) 10627-10636.

DOI: 10.1021/ie9005047

Google Scholar

[15] H. Koyuncu, A.R. Kul, N. Yıldız, A. Çalımlı, H. Ceylan, Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites, J. Hazard. Mater., 141 (2007) 128-139.

DOI: 10.1016/j.jhazmat.2006.06.101

Google Scholar

[16] Z. Jia, S. Liang, W. Zhang, W. Wang, C. Yang, L. Zhang, Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe 78 Si 9 B 13 and Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 alloys: The influence of adsorption, Journal of the Taiwan Institute of Chemical Engineers, 71 (2017).

DOI: 10.1016/j.jtice.2016.11.021

Google Scholar

[17] K.G. Bhattacharyya, A. Sharma, Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder, Dyes and pigments, 65 (2005) 51-59.

DOI: 10.1016/j.dyepig.2004.06.016

Google Scholar