[1]
M. Shelef, Selective catalytic reduction of NOx with N-Free reductants, Chem. Rev. 95 (1995) 209-225.
DOI: 10.1021/cr00033a008
Google Scholar
[2]
J.F. Brilhac, A. Sultana, P. Gilot, J.A. Martens, Adsorption and pressure swing desorption of NOx in Na-Y zeolite: experiments and modeling, Environ. Sci. Technol. 36(2002) 1136-40.
DOI: 10.1021/es0101680
Google Scholar
[3]
D. Fang, J.L. Xie, H. Hu, H. Yang, F. He, Z.B. Fu, Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR, Chem. Eng. J. 271 (2015) 23-30.
DOI: 10.1016/j.cej.2015.02.072
Google Scholar
[4]
S. Dahlin, M. Nilsson, D. Backstrom, S.L. Bergman, E. Bengtsson, S.L. Bernasek, L.J. Pettersson, Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5-WO3/TiO2 SCR catalysts, App. Catal. B 183 (2016) 377-385.
DOI: 10.1016/j.apcatb.2015.10.045
Google Scholar
[5]
L. Song, J. Chao, Y. Fang, H. He, Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction, Chem. Eng. J. 303 (2016) 275-281.
DOI: 10.1016/j.cej.2016.05.124
Google Scholar
[6]
L. Lietti, P. Forzatti, F. Bregani, Steady-state and transient reactivity study of TiO2-supported V2O5-WO3 De-NOx catalysts: relevance of the vanadium-tungsten interaction on the catalytic activity, Ind. Eng. Chem. Res. 35 (1996) 3884-3892.
DOI: 10.1021/ie960158l
Google Scholar
[7]
D.K. Pappas, T. Boningari, P. Boolchand, P.G. Smirniotis, Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3, J. Catal. 334 (2016) 1-13.
DOI: 10.1016/j.jcat.2015.11.013
Google Scholar
[8]
D. Fang, F. He, X.Q. Liu, K. Qi, J.L. Xie, F.X. Li, C.Q. Yu, Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping, Appl. Surf. Sci. 427 (2018) 45-55.
DOI: 10.1016/j.apsusc.2017.08.088
Google Scholar
[9]
D. Fang, J.L. Xie, H. Hu, Z. Zhang, F. He, Y. Zheng, Q. Zhang, Effects of precursors and preparation methods on the potassium deactivation of MnOx/TiO2 catalysts for NO removal, Fuel Process. Technol. 134 (2015) 465-472.
DOI: 10.1016/j.fuproc.2015.03.001
Google Scholar
[10]
D. Fang, J.L. Xie, D. Mei, Y.M. Zhang, F. He, X.Q. Liu, Y.M. Li, Effect of CuMn2O4 spinel in Cu-Mn oxides catalysts on selective catalytic reduction of NOx with NH3 at low temperature, RSC Adv. 4 (2014) 25540-25551.
DOI: 10.1039/c4ra02824d
Google Scholar
[11]
L. Chen, J.H. Li, M.F. Ge, The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3, Chem. Eng. J. 170 (2011) 531-537.
DOI: 10.1016/j.cej.2010.11.020
Google Scholar
[12]
M.A. Zamudio, N. Russo, D. Fino, Low temperature NH3 selective catalytic reduction of NOx over substituted MnCr2O4 spinel-oxide catalysts, Ind. Eng. Chem. Res. 50 (2011) 417-423.
DOI: 10.1021/ie200227u
Google Scholar
[13]
X. Wang, Z. Lan, K. Zhang, J Chen, L. Jiang, R. Wang, Structure-activity relationships of AMn2O4 (A = Cu and Co) spinels in selective catalytic reduction of NOx: Experimental and theoretical study, J. Phys. Chem. C 121 (2017) 3339-3349.
DOI: 10.1021/acs.jpcc.6b10446.s001
Google Scholar
[14]
K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel, J. Am. Ceram. Soc. 82 (1999) 3279-3292.
Google Scholar
[15]
I. Spassova, D. Mehandjiev, Mechanism of NO conversion over a coprecipitated CuO-MnOx spinel-like catalyst, React. Kinet. Catal. Lett. 69 (2000) 231-237.
Google Scholar