[1]
A.L. Kustov, A.M. Frey, K.E. Larsen, T. Johannessen, J.K. Nørskov, C.H. Christensen, CO methanation over supported bimetallic Ni-Fe catalysts: from computational studies towards catalyst optimization, Appl. Catal. A-Gen. 320 (2007) 98-104.
DOI: 10.1016/j.apcata.2006.12.017
Google Scholar
[2]
J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Production of synthetic naturalgas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89 (2010) 1763-1783.
DOI: 10.1016/j.fuel.2010.01.027
Google Scholar
[3]
J. Klose, M. Baerns, Kinetics of the methanation of carbon monoxide on an alumina-supported nickel catalyst, J. Catal. 85 (1984) 105-116.
DOI: 10.1016/0021-9517(84)90114-3
Google Scholar
[4]
D.A. Saletore, W.J. Thomson, Methanation reaction rates for recycle reactor compositions, Ind. Eng. Chern. Process Des. Dev. 16 (1977) 70-75.
DOI: 10.1021/i260061a011
Google Scholar
[5]
R.E. Hayes, W.J. Thomas, K.E. Hayes, A study of the nickel-catalyzed methanation reaction, J. Catal. 92 (1985) 312-326.
DOI: 10.1016/0021-9517(85)90266-0
Google Scholar
[6]
B. Wang, Y. Yao, M. Jiang, Z. Li, X. Ma, S. Qin, Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation, J. Nat. Gas Chem. 23 (2014) 35-42.
DOI: 10.1016/s2095-4956(14)60115-7
Google Scholar
[7]
B. Wang, S. Liu, Z. Hu, Z. Li, X. Ma, Effect of H2S concentration on MoO3/Al2O3 and CoO-MoO3/Al2O3 catalysts for sulfur-resistant methanation, Acta. Phys. Chim. Sin. 31 (2015) 545-551.
DOI: 10.3390/catal7050151
Google Scholar
[8]
J. Zhang, Z. Xin, X. Meng, Y. Lv, M. Tao, Effect of MoO3 on structures and properties of Ni-SiO2 methanation catalysts prepared by the hydrothermal synthesis method, Ind. Eng. Chem. Res. 52 (2013) 14533-14544.
DOI: 10.1021/ie401708h
Google Scholar
[9]
J. Sehested, S. Dahl, J. Jacobsen, J.R. Rostrup-Nielsen, Methanation of CO over nickel: mechanism and kinetics at high H2 /CO ratios, J. Phys. Chem. B 109 (2005) 2432–2438.
DOI: 10.1021/jp040239s
Google Scholar
[10]
L.C. Loc, N.M. Huan, N.A. Gaidai, H.S. Thoang, Y.A. Agafonov, N.V. Nekrasov, Kinetics of carbon monoxide methanation on nickel catalysts, Kinet. Catal. 53(2012) 384–394.
DOI: 10.1134/s0023158412030093
Google Scholar
[11]
J. Zhang, N. Fatah, S. Capela, Y. Kara, O. Guerrini, A.Y. Khodakov, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas, Fuel 111 (2013) 845–854.
DOI: 10.1016/j.fuel.2013.04.057
Google Scholar
[12]
M. Saito, R.B. Anderson, The activity of several molybdenum compounds for the methanation of CO, J. Catal. 63 (1980) 438–446.
DOI: 10.1016/0021-9517(80)90098-6
Google Scholar
[13]
C. Lin, H. Wang, Z. Li, B. Wang, X. Ma, S. Qin, Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst, Front Chem. Sci. Eng. 7 (2013) 88–94.
DOI: 10.1007/s11705-013-1301-1
Google Scholar
[14]
V. Sanchez-Escribano, M.A. Larrubia Vargas, E. Finocchio, G. Busca, On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: An IR study, Appl. Catal. A-Gen. 316 (2007) 68-74.
DOI: 10.1016/j.apcata.2006.09.020
Google Scholar
[15]
N.S. Govebder, F. Gideon Botes, H.J.M. Mart, J.C. Schouten. Mechanistic pathway for methane formation over an iron-based catalyst, J. Catal. 260 (2008) 254-261.
DOI: 10.1016/j.jcat.2008.10.008
Google Scholar
[16]
C.W. Hu, Y.Q. Chen, P. Li, H. Min, Y. Chen, A.M. Tian, Temperature-programmed FT-IR study of the adsorption of CO and co-adsorption of CO and H2 on Ni/Al2O3, J. Mol. Catal. A-Chem. 110 (1996) 163-169.
DOI: 10.1016/1381-1169(96)00044-1
Google Scholar
[17]
C.W. Hu, Y.Q. Chen, P. Li, H. Min, Y. Chen, A.M. Tian, On the Interaction of CO and H2 with Ni-based Catalyst, J. Mol. Catal. 9 (1995) 435-444.
Google Scholar
[18]
T. Sasaki, T. Suzuki, Sulfide molybdenum catalysts for water-gas shift reaction: Influence of the kind of promoters and supports to generate MoS2, Appl. Catal. A-Gen. 484 (2014) 79-83.
DOI: 10.1016/j.apcata.2014.06.021
Google Scholar