Preparation of Siliconized Graphite by Liquid Silicon Infiltration of Porous Carbon Materials

Abstract:

Article Preview

Siliconized graphite was prepared by liquid silicon infiltration (LSI) of carbon preforms composed of mesocarbon microbeads (MCMBs), petroleum coke and graphite powder as the carbon source with binder of phenolic resin. Effects of the carbon source, binder contents, ball-milling time and moulding pressure on the properties of the porous carbon preforms and the siliconized graphite were investigated. The results showed that the moulding pressure was the main factor influencing the open porosity of the carbon preforms. The carbon preforms with porosity of above 45% could be infiltrated completely with Si, and maximum open porosity of 56% could be reached for the carbon preforms. For the siliconized graphite, high MCMBs contents contributed to high density, while high graphite content led to increased carbon remaining. The densities, open porosities, and the highest bending strength of the siliconized graphite were ranged between 2.90-3.01g·cm-3, less than 1.5%, and 317 MPa, respectively.

Info:

Periodical:

Edited by:

Junichi Hojo, Tohru Sekino, Jian Feng Yang, Hyung Sun Kim and Wen Bin Cao

Pages:

55-61

Citation:

Y. Y. Zhao et al., "Preparation of Siliconized Graphite by Liquid Silicon Infiltration of Porous Carbon Materials", Materials Science Forum, Vol. 922, pp. 55-61, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] A. Amanov, Y. S. Pyun, J. H. Kim, S. Sasaki, Enhancement in wear resistance of sintered silicon carbide at various temperatures, Tribo. Int. 74 (2014) 28-37.

DOI: https://doi.org/10.1016/j.triboint.2014.01.027

[2] S. Xu, G. Qiao, D. Li, H. Yang, Y. Liu, T. Lu, Reaction forming of silicon carbide ceramic using phenolic resin derived porous carbon perform, J. Eur. Ceram. Soc. 29 (2009) 2395–2402.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.01.022

[3] M. Esfehanian, J. Guenster, J.G. Heinrich, J. Horvath, D. Koch, G. Grathwohl, High-temperature mechanical behavior of carbon–silicide–carbide composites developed by alloyed melt infiltration, J. Eur. Ceram. Soc. 28 (2008) 1267–1274.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.09.053

[4] S.Y. Kim, I. S. Han, S.K. Woo, K. S. Lee, D.K. Kim, Wear-mechanical properties of filler-added liquid silicon infiltration C/C–SiC composites, Mater. Des. 44 (2013) 107–113.

DOI: https://doi.org/10.1016/j.matdes.2012.07.064

[5] Z. Stadler, K. Krnel, T. Kosmac, Friction behavior of sintered metallic brake pads on a C/C-SiC composite brake disc, J. Eur. Ceram. Soc. 27(2007) 1411–1417.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.04.032

[6] M Kermc, M. Kalin, J. Vizintin, Development and use of an apparatus for tribological evaluation of ceramic-based brake materials, Wear 259 (2005) 1079–1087.

DOI: https://doi.org/10.1016/j.wear.2004.12.002

[7] S. Safi, A. Kazemzadeh, MCMB-SiC composites; new class high-temperature structural material for aerospace applications, Ceram. Int. 39 (2013) 81–86.

DOI: https://doi.org/10.1016/j.ceramint.2012.05.098

[8] H. Xia, J. Wang, Z. Shi, G. Qiao, Reciprocating friction and wear properties of mesocarbon microbeads-based graphite and siliconized graphite, J. Nucl. Mater. 433 (2013) 341–344.

DOI: https://doi.org/10.1016/j.jnucmat.2012.09.016

[9] Y. Wang, S. Tan, D. Jiang, The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC, Carbon 42 (2004) 1833–1839.

DOI: https://doi.org/10.1016/j.carbon.2004.03.018

[10] N.R. Calderon, M. Martínez-Escandell, J. Narciso, F. Rodríguez-Reinoso, The combined effect of porosity and reactivity of the carbon preforms on the properties of SiC produced by reactive infiltration with liquid Si, Carbon 47 (2009) 2200-2210.

DOI: https://doi.org/10.1016/j.carbon.2009.04.002

[11] Z. Yang, X. He, M. Wu, L. Zhang , A. Ma, R. Liu , H. Hu, Y. Zhang , X. Qu, Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process, J. Eur. Ceram. Soc. 33 (2013) 869–878.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.09.010

[12] S. Kumar, A. Kumar, A. Shukla, A.K. Gupta, R. Devi, Capillary infiltration studies of liquids into 3D-stitched C–C preforms Part A: Internal pore characterization by solvent infiltration, mercury porosimetry, and permeability studies, J. Eur. Ceram. Soc. 29 (2009).

DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.03.007

[13] S. Kumar, A. Kumara, R. Devi, A. Shukla, A.K. Gupta, Capillary infiltration studies of liquids into 3D-stitched C–C preforms Part B: Kinetics of silicon infiltration, J. Eur. Ceram. Soc. 29 (2009) 2651–2657.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.03.006

[14] Y.Zhao, H. Xia, R.Tang, Z. Shi, J. Yang, J. Wang, A low cost preparation of C/SiC composites by infiltrating molten Si into gelcasted pure porous carbon preform, Ceram. Int. 41 (2015) 6478–6487.

DOI: https://doi.org/10.1016/j.ceramint.2015.01.087

[15] I. Mochida, Y. Korai, C.H. Ku, F. Watanabe, Y. Sakai, Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch, Carbon 38 (2000) 305–328.

DOI: https://doi.org/10.1016/s0008-6223(99)00176-1

[16] H. Xia, J. Wang, B. Huang, Z. Shi, G. Liu, G. Qiao, The influence of ball-milling on improving the performance of mesocarbon microbeads based carbon blocks, Mater. Sci. Eng. A. 529 (2011) 282–288.

DOI: https://doi.org/10.1016/j.msea.2011.09.030

[17] S. Safi, R. Yazdani Rad, In situ synthesis of nano size silicon carbide and fabrication of C-SiC composites during the siliconization process of mesocarbon microbeads performs, Ceram. Int. 38 (2012) 5081-5087.

DOI: https://doi.org/10.1016/j.ceramint.2012.03.010

[18] Y.G. Wang, Y. Korai, I. Mochida, Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads, Carbon 37 (1999) 1049–1057.

DOI: https://doi.org/10.1016/s0008-6223(98)00298-x

Fetching data from Crossref.
This may take some time to load.