Preparation of Siliconized Graphite by Liquid Silicon Infiltration of Porous Carbon Materials

Article Preview

Abstract:

Siliconized graphite was prepared by liquid silicon infiltration (LSI) of carbon preforms composed of mesocarbon microbeads (MCMBs), petroleum coke and graphite powder as the carbon source with binder of phenolic resin. Effects of the carbon source, binder contents, ball-milling time and moulding pressure on the properties of the porous carbon preforms and the siliconized graphite were investigated. The results showed that the moulding pressure was the main factor influencing the open porosity of the carbon preforms. The carbon preforms with porosity of above 45% could be infiltrated completely with Si, and maximum open porosity of 56% could be reached for the carbon preforms. For the siliconized graphite, high MCMBs contents contributed to high density, while high graphite content led to increased carbon remaining. The densities, open porosities, and the highest bending strength of the siliconized graphite were ranged between 2.90-3.01g·cm-3, less than 1.5%, and 317 MPa, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-61

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Amanov, Y. S. Pyun, J. H. Kim, S. Sasaki, Enhancement in wear resistance of sintered silicon carbide at various temperatures, Tribo. Int. 74 (2014) 28-37.

DOI: 10.1016/j.triboint.2014.01.027

Google Scholar

[2] S. Xu, G. Qiao, D. Li, H. Yang, Y. Liu, T. Lu, Reaction forming of silicon carbide ceramic using phenolic resin derived porous carbon perform, J. Eur. Ceram. Soc. 29 (2009) 2395–2402.

DOI: 10.1016/j.jeurceramsoc.2009.01.022

Google Scholar

[3] M. Esfehanian, J. Guenster, J.G. Heinrich, J. Horvath, D. Koch, G. Grathwohl, High-temperature mechanical behavior of carbon–silicide–carbide composites developed by alloyed melt infiltration, J. Eur. Ceram. Soc. 28 (2008) 1267–1274.

DOI: 10.1016/j.jeurceramsoc.2007.09.053

Google Scholar

[4] S.Y. Kim, I. S. Han, S.K. Woo, K. S. Lee, D.K. Kim, Wear-mechanical properties of filler-added liquid silicon infiltration C/C–SiC composites, Mater. Des. 44 (2013) 107–113.

DOI: 10.1016/j.matdes.2012.07.064

Google Scholar

[5] Z. Stadler, K. Krnel, T. Kosmac, Friction behavior of sintered metallic brake pads on a C/C-SiC composite brake disc, J. Eur. Ceram. Soc. 27(2007) 1411–1417.

DOI: 10.1016/j.jeurceramsoc.2006.04.032

Google Scholar

[6] M Kermc, M. Kalin, J. Vizintin, Development and use of an apparatus for tribological evaluation of ceramic-based brake materials, Wear 259 (2005) 1079–1087.

DOI: 10.1016/j.wear.2004.12.002

Google Scholar

[7] S. Safi, A. Kazemzadeh, MCMB-SiC composites; new class high-temperature structural material for aerospace applications, Ceram. Int. 39 (2013) 81–86.

DOI: 10.1016/j.ceramint.2012.05.098

Google Scholar

[8] H. Xia, J. Wang, Z. Shi, G. Qiao, Reciprocating friction and wear properties of mesocarbon microbeads-based graphite and siliconized graphite, J. Nucl. Mater. 433 (2013) 341–344.

DOI: 10.1016/j.jnucmat.2012.09.016

Google Scholar

[9] Y. Wang, S. Tan, D. Jiang, The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC, Carbon 42 (2004) 1833–1839.

DOI: 10.1016/j.carbon.2004.03.018

Google Scholar

[10] N.R. Calderon, M. Martínez-Escandell, J. Narciso, F. Rodríguez-Reinoso, The combined effect of porosity and reactivity of the carbon preforms on the properties of SiC produced by reactive infiltration with liquid Si, Carbon 47 (2009) 2200-2210.

DOI: 10.1016/j.carbon.2009.04.002

Google Scholar

[11] Z. Yang, X. He, M. Wu, L. Zhang , A. Ma, R. Liu , H. Hu, Y. Zhang , X. Qu, Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process, J. Eur. Ceram. Soc. 33 (2013) 869–878.

DOI: 10.1016/j.jeurceramsoc.2012.09.010

Google Scholar

[12] S. Kumar, A. Kumar, A. Shukla, A.K. Gupta, R. Devi, Capillary infiltration studies of liquids into 3D-stitched C–C preforms Part A: Internal pore characterization by solvent infiltration, mercury porosimetry, and permeability studies, J. Eur. Ceram. Soc. 29 (2009).

DOI: 10.1016/j.jeurceramsoc.2009.03.006

Google Scholar

[13] S. Kumar, A. Kumara, R. Devi, A. Shukla, A.K. Gupta, Capillary infiltration studies of liquids into 3D-stitched C–C preforms Part B: Kinetics of silicon infiltration, J. Eur. Ceram. Soc. 29 (2009) 2651–2657.

DOI: 10.1016/j.jeurceramsoc.2009.03.006

Google Scholar

[14] Y.Zhao, H. Xia, R.Tang, Z. Shi, J. Yang, J. Wang, A low cost preparation of C/SiC composites by infiltrating molten Si into gelcasted pure porous carbon preform, Ceram. Int. 41 (2015) 6478–6487.

DOI: 10.1016/j.ceramint.2015.01.087

Google Scholar

[15] I. Mochida, Y. Korai, C.H. Ku, F. Watanabe, Y. Sakai, Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch, Carbon 38 (2000) 305–328.

DOI: 10.1016/s0008-6223(99)00176-1

Google Scholar

[16] H. Xia, J. Wang, B. Huang, Z. Shi, G. Liu, G. Qiao, The influence of ball-milling on improving the performance of mesocarbon microbeads based carbon blocks, Mater. Sci. Eng. A. 529 (2011) 282–288.

DOI: 10.1016/j.msea.2011.09.030

Google Scholar

[17] S. Safi, R. Yazdani Rad, In situ synthesis of nano size silicon carbide and fabrication of C-SiC composites during the siliconization process of mesocarbon microbeads performs, Ceram. Int. 38 (2012) 5081-5087.

DOI: 10.1016/j.ceramint.2012.03.010

Google Scholar

[18] Y.G. Wang, Y. Korai, I. Mochida, Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads, Carbon 37 (1999) 1049–1057.

DOI: 10.1016/s0008-6223(98)00298-x

Google Scholar