[1]
J.H. Du, G.P. Zhao, Q. Deng, et al, Development of wrought superalloy in China. Journal of Aeronautical Materials. 36(3) (2016) 27-39.
Google Scholar
[2]
H.Y. Li, J.F. Sun, M.C. Hardy, et al, Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy. Acta Mater. 90 (2015) 355-369.
DOI: 10.1016/j.actamat.2015.02.023
Google Scholar
[3]
C. Zhang, W.F. Shen, L.W. Zhang, et al, The microstructure and gamma prime distributions in inertia friction welded joint of P/M Superalloy FGH96. J Mater Eng Perform. 26(4) (2017) 1581-1588.
DOI: 10.1007/s11665-017-2601-2
Google Scholar
[4]
C.J. Wu, Y. Tao, J. Jia, Microstructure and properties of an advanced Nickel-base PM Superalloy. Journal of Iron and Steel Research, International. 21(12) (2014) 1152-1157.
DOI: 10.1016/s1006-706x(14)60198-9
Google Scholar
[5]
X.Y. Gao, R. Hu, J.R. Yang, The effect of Ni3(Cr0.2W0.4Ti0.4) particles with DO22 structure on the deformation mode and mechanical properties of the aged Ni-Cr-W-Ti alloy. Scripta Mater. 153 (2018) 44-48.
DOI: 10.1016/j.scriptamat.2018.04.029
Google Scholar
[6]
X. Wang, F. Fan, J.A. Szpunar, et al, Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900°C. Mater Charact. 107 (2015) 33-42.
DOI: 10.1016/j.matchar.2015.06.029
Google Scholar
[7]
A.K. JenaM.C. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys. J Mater Sci. 19(10) (1984) 3121-3139.
DOI: 10.1007/bf00549796
Google Scholar
[8]
M. Pröbstle, S. Neumeier, P. Feldner, et al, Improved creep strength of nickel-base superalloys by optimized γ/γ' partitioning behavior of solid solution strengthening elements. Mater Sci Eng, A. 676 (2016) 411-420.
DOI: 10.1016/j.msea.2016.08.121
Google Scholar
[9]
F.F. Liu, J.Y. Chen, J.X. Dong, et al, The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy. Mater Sci Eng, A. 651 (2016) 102-115.
DOI: 10.1016/j.msea.2015.10.099
Google Scholar
[10]
J.Y. Chen, J.X. Dong, M.C. Zhang, et al, Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ' phases. Mater Sci Eng, A. 673 (2016) 122-134.
DOI: 10.1016/j.msea.2016.07.068
Google Scholar
[11]
B.J. Zhang, G.P. Zhao, W.Y. Zhang, et al, Investigation of high performance disc alloy GH4065 and associated advanced processing techniques. Acta Metallurgica Sinica. 51(10) (2015) 1227-1234.
Google Scholar
[12]
B.C. Xie, Y.Q. Ning, C. Zhou, Deformation behavior and microstructure evolution of two typical structures in Udimet 720Li ingot. Procedia Engineering. 207 (2017) 1093-1098.
DOI: 10.1016/j.proeng.2017.10.1136
Google Scholar
[13]
G.A. El-Awadi, S. Abdel-Samad, E.S. Elshazly, Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys. Appl Surf Sci. 378 (2016) 224-230.
DOI: 10.1016/j.apsusc.2016.03.181
Google Scholar
[14]
A.M.S. Costa, J.P. Oliveira, M.V. Salgado, et al, Effect of Ta and Nb additions in arc-melted Co-Ni-based superalloys: Microstructural and mechanical properties. Mater Sci Eng, A. 730 (2018) 66-72.
DOI: 10.1016/j.msea.2018.05.078
Google Scholar
[15]
C.S. Lee, Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys. (1971).
Google Scholar
[16]
S.S. Katnagallu, S. Mandal, A. Cheekur Nagaraja, et al, Role of Carbide Precipitates and Process Parameters on Achieving Grain Boundary Engineered Microstructure in a Ni-Based Superalloy. Metall Mater Trans A. 46(10) (2015) 4740-4754.
DOI: 10.1007/s11661-015-3064-4
Google Scholar
[17]
Y.X. Xu, J.T. Lu, W.Y. Li, et al, Oxidation behaviour of Nb-rich Ni-Cr-Fe alloys: Role and effect of carbides precipitates. Corros Sci, (2018).
DOI: 10.1016/j.corsci.2018.05.040
Google Scholar
[18]
D. Kim, C. Jang, W.S. Ryu, Oxidation characteristics and oxide layer evolution of Alloy 617 and Haynes 230 at 900°C and 1100°C. Oxid Met. 71(5) (2009) 271-293.
DOI: 10.1007/s11085-009-9142-5
Google Scholar
[19]
S.L. Semiatin, R.C. Kramb, R.E. Turner, et al, Analysis of the homogenization of a nickel-base superalloy. Scripta Mater. 51(6) (2004) 491-495.
DOI: 10.1016/j.scriptamat.2004.05.049
Google Scholar
[20]
K. Gopinath, A. Gogia, S. Kamat, et al, Tensile properties of Ni-Based superalloy 720Li: Temperature and strain rate effects. Metall Mater Trans A. 39(10) (2008) 2340-2350.
DOI: 10.1007/s11661-008-9585-3
Google Scholar
[21]
C.Y. Gui, A. Sato, Y.F. Gu, et al, Microstructure and yield strength of UDIMET 720Li alloyed with Co-16.9 Wt Pct Ti. Metall Mater Trans A. 36(11) (2005) 2921-2927.
DOI: 10.1007/s11661-005-0065-8
Google Scholar
[22]
F. Long, Y.S. Yoo, C.Y. Jo, et al, Formation of η and σ phase in three polycrystalline superalloys and their impact on tensile properties. Mater Sci Eng, A. 527(1-2) (2009) 361-369.
DOI: 10.1016/j.msea.2009.09.016
Google Scholar
[23]
L. Gong, B. Chen, L. Zhang, et al, Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G. J Mater Sci Technol. 34(5) (2018) 811-820.
DOI: 10.1016/j.jmst.2017.03.023
Google Scholar
[24]
J.J. Ruan, N. Ueshima, K. Oikawa, Phase transformations and grain growth behaviors in superalloy 718. J Alloys Compd. 737(2018) 83-91.
DOI: 10.1016/j.jallcom.2017.11.327
Google Scholar
[25]
W.M. Gui, H.Y. Zhang, M. Yang, et al, Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd. 728(2017) 145-151.
DOI: 10.1016/j.jallcom.2017.08.287
Google Scholar
[26]
J. Tiley, G.B. Viswanathan, R. Srinivasan, et al, Coarsening kinetics of γ' precipitates in the commercial nickel base Superalloy René 88 DT. Acta Mater. 57(8) (2009) 2538-2549.
DOI: 10.1016/j.actamat.2009.02.010
Google Scholar
[27]
X.D. Lu, J.H. Du, Q. Deng, et al, Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. J Alloys Compd. 486(1) (2009) 195-198.
DOI: 10.1016/j.jallcom.2009.07.020
Google Scholar
[28]
H. Zhang, Y. Liu, X. Chen, et al, Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content. J Alloys Compd. 727 (2017) 410-418.
DOI: 10.1016/j.jallcom.2017.08.137
Google Scholar
[29]
J.T. Yeom, C.S. Lee, J.H. Kim, et al, Finite-element analysis of microstructure evolution in the cogging of an Alloy 718 ingot. Mater Sci Eng, A. 449 (2007) 722-726.
DOI: 10.1016/j.msea.2006.02.415
Google Scholar
[30]
W. Sun, X.Z. Qin, J.T. Guo, et al, Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni–Fe–Cr based superalloy during long-term thermal exposure. Mater Des. 69 (2015) 70-80.
DOI: 10.1016/j.matdes.2014.12.030
Google Scholar