Thoughts on High Performance Superalloy Design and Microstructural Characteristics of a Newly Designed Ni-Cr-Co-W Superalloy Applied above 850°C

Abstract:

Article Preview

With the development of aircraft engine, higher requirement was put forward on turbine disk materials. In the present work, new thoughts on improving high temperature properties of superalloys have been proposed and a newly developed candidate turbine disk material for 850°C-900°C application with a composition of Ni-Co-Cr-W superalloy has been investigated. The results show that W is beneficial for mechanical properties. Microstructural characteristics and hot deformation of this new alloy were studied by optical microscope (OM), field emission scanning electric microscope (FESEM) and energy dispersive X-ray spectrometer (EDX) and differential scanning calorimetry (DSC). The results show that the main precipitates in the as-cast condition are γ’ phase, primary MC carbides and eutectic phase. The incipient melting temperature, γ’ solvus and MC solvus are 1312°C, 1220°C and 1356°C respectively. Cracks are observed in the tested samples after hot deformed at 1160°C to 1220°C with 30% strain. They initiated at the surface of the samples and propagated along the grain boundaries and also initiated at the interface of carbides and matrix.

Info:

Periodical:

Edited by:

Prof. Yafang Han

Pages:

13-24

Citation:

X. M. Xiang et al., "Thoughts on High Performance Superalloy Design and Microstructural Characteristics of a Newly Designed Ni-Cr-Co-W Superalloy Applied above 850°C", Materials Science Forum, Vol. 944, pp. 13-24, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] J.H. Du, G.P. Zhao, Q. Deng, et al, Development of wrought superalloy in China. Journal of Aeronautical Materials. 36(3) (2016) 27-39.

[2] H.Y. Li, J.F. Sun, M.C. Hardy, et al, Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy. Acta Mater. 90 (2015) 355-369.

DOI: https://doi.org/10.1016/j.actamat.2015.02.023

[3] C. Zhang, W.F. Shen, L.W. Zhang, et al, The microstructure and gamma prime distributions in inertia friction welded joint of P/M Superalloy FGH96. J Mater Eng Perform. 26(4) (2017) 1581-1588.

DOI: https://doi.org/10.1007/s11665-017-2601-2

[4] C.J. Wu, Y. Tao, J. Jia, Microstructure and properties of an advanced Nickel-base PM Superalloy. Journal of Iron and Steel Research, International. 21(12) (2014) 1152-1157.

DOI: https://doi.org/10.1016/s1006-706x(14)60198-9

[5] X.Y. Gao, R. Hu, J.R. Yang, The effect of Ni3(Cr0.2W0.4Ti0.4) particles with DO22 structure on the deformation mode and mechanical properties of the aged Ni-Cr-W-Ti alloy. Scripta Mater. 153 (2018) 44-48.

DOI: https://doi.org/10.1016/j.scriptamat.2018.04.029

[6] X. Wang, F. Fan, J.A. Szpunar, et al, Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900°C. Mater Charact. 107 (2015) 33-42.

[7] A.K. JenaM.C. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys. J Mater Sci. 19(10) (1984) 3121-3139.

DOI: https://doi.org/10.1007/bf00549796

[8] M. Pröbstle, S. Neumeier, P. Feldner, et al, Improved creep strength of nickel-base superalloys by optimized γ/γ' partitioning behavior of solid solution strengthening elements. Mater Sci Eng, A. 676 (2016) 411-420.

DOI: https://doi.org/10.1016/j.msea.2016.08.121

[9] F.F. Liu, J.Y. Chen, J.X. Dong, et al, The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy. Mater Sci Eng, A. 651 (2016) 102-115.

DOI: https://doi.org/10.1016/j.msea.2015.10.099

[10] J.Y. Chen, J.X. Dong, M.C. Zhang, et al, Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ' phases. Mater Sci Eng, A. 673 (2016) 122-134.

DOI: https://doi.org/10.1016/j.msea.2016.07.068

[11] B.J. Zhang, G.P. Zhao, W.Y. Zhang, et al, Investigation of high performance disc alloy GH4065 and associated advanced processing techniques. Acta Metallurgica Sinica. 51(10) (2015) 1227-1234.

[12] B.C. Xie, Y.Q. Ning, C. Zhou, Deformation behavior and microstructure evolution of two typical structures in Udimet 720Li ingot. Procedia Engineering. 207 (2017) 1093-1098.

DOI: https://doi.org/10.1016/j.proeng.2017.10.1136

[13] G.A. El-Awadi, S. Abdel-Samad, E.S. Elshazly, Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys. Appl Surf Sci. 378 (2016) 224-230.

DOI: https://doi.org/10.1016/j.apsusc.2016.03.181

[14] A.M.S. Costa, J.P. Oliveira, M.V. Salgado, et al, Effect of Ta and Nb additions in arc-melted Co-Ni-based superalloys: Microstructural and mechanical properties. Mater Sci Eng, A. 730 (2018) 66-72.

DOI: https://doi.org/10.1016/j.msea.2018.05.078

[15] C.S. Lee, Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys. (1971).

[16] S.S. Katnagallu, S. Mandal, A. Cheekur Nagaraja, et al, Role of Carbide Precipitates and Process Parameters on Achieving Grain Boundary Engineered Microstructure in a Ni-Based Superalloy. Metall Mater Trans A. 46(10) (2015) 4740-4754.

DOI: https://doi.org/10.1007/s11661-015-3064-4

[17] Y.X. Xu, J.T. Lu, W.Y. Li, et al, Oxidation behaviour of Nb-rich Ni-Cr-Fe alloys: Role and effect of carbides precipitates. Corros Sci, (2018).

[18] D. Kim, C. Jang, W.S. Ryu, Oxidation characteristics and oxide layer evolution of Alloy 617 and Haynes 230 at 900°C and 1100°C. Oxid Met. 71(5) (2009) 271-293.

DOI: https://doi.org/10.1007/s11085-009-9142-5

[19] S.L. Semiatin, R.C. Kramb, R.E. Turner, et al, Analysis of the homogenization of a nickel-base superalloy. Scripta Mater. 51(6) (2004) 491-495.

DOI: https://doi.org/10.1016/j.scriptamat.2004.05.049

[20] K. Gopinath, A. Gogia, S. Kamat, et al, Tensile properties of Ni-Based superalloy 720Li: Temperature and strain rate effects. Metall Mater Trans A. 39(10) (2008) 2340-2350.

DOI: https://doi.org/10.1007/s11661-008-9585-3

[21] C.Y. Gui, A. Sato, Y.F. Gu, et al, Microstructure and yield strength of UDIMET 720Li alloyed with Co-16.9 Wt Pct Ti. Metall Mater Trans A. 36(11) (2005) 2921-2927.

DOI: https://doi.org/10.1007/s11661-005-0065-8

[22] F. Long, Y.S. Yoo, C.Y. Jo, et al, Formation of η and σ phase in three polycrystalline superalloys and their impact on tensile properties. Mater Sci Eng, A. 527(1-2) (2009) 361-369.

[23] L. Gong, B. Chen, L. Zhang, et al, Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G. J Mater Sci Technol. 34(5) (2018) 811-820.

DOI: https://doi.org/10.1016/j.jmst.2017.03.023

[24] J.J. Ruan, N. Ueshima, K. Oikawa, Phase transformations and grain growth behaviors in superalloy 718. J Alloys Compd. 737(2018) 83-91.

[25] W.M. Gui, H.Y. Zhang, M. Yang, et al, Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd. 728(2017) 145-151.

[26] J. Tiley, G.B. Viswanathan, R. Srinivasan, et al, Coarsening kinetics of γ' precipitates in the commercial nickel base Superalloy René 88 DT. Acta Mater. 57(8) (2009) 2538-2549.

DOI: https://doi.org/10.1016/j.actamat.2009.02.010

[27] X.D. Lu, J.H. Du, Q. Deng, et al, Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. J Alloys Compd. 486(1) (2009) 195-198.

DOI: https://doi.org/10.1016/j.jallcom.2009.07.020

[28] H. Zhang, Y. Liu, X. Chen, et al, Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content. J Alloys Compd. 727 (2017) 410-418.

DOI: https://doi.org/10.1016/j.jallcom.2017.08.137

[29] J.T. Yeom, C.S. Lee, J.H. Kim, et al, Finite-element analysis of microstructure evolution in the cogging of an Alloy 718 ingot. Mater Sci Eng, A. 449 (2007) 722-726.

DOI: https://doi.org/10.1016/j.msea.2006.02.415

[30] W. Sun, X.Z. Qin, J.T. Guo, et al, Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni–Fe–Cr based superalloy during long-term thermal exposure. Mater Des. 69 (2015) 70-80.

DOI: https://doi.org/10.1016/j.matdes.2014.12.030