Thoughts on High Performance Superalloy Design and Microstructural Characteristics of a Newly Designed Ni-Cr-Co-W Superalloy Applied above 850°C

Article Preview

Abstract:

With the development of aircraft engine, higher requirement was put forward on turbine disk materials. In the present work, new thoughts on improving high temperature properties of superalloys have been proposed and a newly developed candidate turbine disk material for 850°C-900°C application with a composition of Ni-Co-Cr-W superalloy has been investigated. The results show that W is beneficial for mechanical properties. Microstructural characteristics and hot deformation of this new alloy were studied by optical microscope (OM), field emission scanning electric microscope (FESEM) and energy dispersive X-ray spectrometer (EDX) and differential scanning calorimetry (DSC). The results show that the main precipitates in the as-cast condition are γ’ phase, primary MC carbides and eutectic phase. The incipient melting temperature, γ’ solvus and MC solvus are 1312°C, 1220°C and 1356°C respectively. Cracks are observed in the tested samples after hot deformed at 1160°C to 1220°C with 30% strain. They initiated at the surface of the samples and propagated along the grain boundaries and also initiated at the interface of carbides and matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-24

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Du, G.P. Zhao, Q. Deng, et al, Development of wrought superalloy in China. Journal of Aeronautical Materials. 36(3) (2016) 27-39.

Google Scholar

[2] H.Y. Li, J.F. Sun, M.C. Hardy, et al, Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy. Acta Mater. 90 (2015) 355-369.

DOI: 10.1016/j.actamat.2015.02.023

Google Scholar

[3] C. Zhang, W.F. Shen, L.W. Zhang, et al, The microstructure and gamma prime distributions in inertia friction welded joint of P/M Superalloy FGH96. J Mater Eng Perform. 26(4) (2017) 1581-1588.

DOI: 10.1007/s11665-017-2601-2

Google Scholar

[4] C.J. Wu, Y. Tao, J. Jia, Microstructure and properties of an advanced Nickel-base PM Superalloy. Journal of Iron and Steel Research, International. 21(12) (2014) 1152-1157.

DOI: 10.1016/s1006-706x(14)60198-9

Google Scholar

[5] X.Y. Gao, R. Hu, J.R. Yang, The effect of Ni3(Cr0.2W0.4Ti0.4) particles with DO22 structure on the deformation mode and mechanical properties of the aged Ni-Cr-W-Ti alloy. Scripta Mater. 153 (2018) 44-48.

DOI: 10.1016/j.scriptamat.2018.04.029

Google Scholar

[6] X. Wang, F. Fan, J.A. Szpunar, et al, Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900°C. Mater Charact. 107 (2015) 33-42.

DOI: 10.1016/j.matchar.2015.06.029

Google Scholar

[7] A.K. JenaM.C. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys. J Mater Sci. 19(10) (1984) 3121-3139.

DOI: 10.1007/bf00549796

Google Scholar

[8] M. Pröbstle, S. Neumeier, P. Feldner, et al, Improved creep strength of nickel-base superalloys by optimized γ/γ' partitioning behavior of solid solution strengthening elements. Mater Sci Eng, A. 676 (2016) 411-420.

DOI: 10.1016/j.msea.2016.08.121

Google Scholar

[9] F.F. Liu, J.Y. Chen, J.X. Dong, et al, The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy. Mater Sci Eng, A. 651 (2016) 102-115.

DOI: 10.1016/j.msea.2015.10.099

Google Scholar

[10] J.Y. Chen, J.X. Dong, M.C. Zhang, et al, Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ' phases. Mater Sci Eng, A. 673 (2016) 122-134.

DOI: 10.1016/j.msea.2016.07.068

Google Scholar

[11] B.J. Zhang, G.P. Zhao, W.Y. Zhang, et al, Investigation of high performance disc alloy GH4065 and associated advanced processing techniques. Acta Metallurgica Sinica. 51(10) (2015) 1227-1234.

Google Scholar

[12] B.C. Xie, Y.Q. Ning, C. Zhou, Deformation behavior and microstructure evolution of two typical structures in Udimet 720Li ingot. Procedia Engineering. 207 (2017) 1093-1098.

DOI: 10.1016/j.proeng.2017.10.1136

Google Scholar

[13] G.A. El-Awadi, S. Abdel-Samad, E.S. Elshazly, Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys. Appl Surf Sci. 378 (2016) 224-230.

DOI: 10.1016/j.apsusc.2016.03.181

Google Scholar

[14] A.M.S. Costa, J.P. Oliveira, M.V. Salgado, et al, Effect of Ta and Nb additions in arc-melted Co-Ni-based superalloys: Microstructural and mechanical properties. Mater Sci Eng, A. 730 (2018) 66-72.

DOI: 10.1016/j.msea.2018.05.078

Google Scholar

[15] C.S. Lee, Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys. (1971).

Google Scholar

[16] S.S. Katnagallu, S. Mandal, A. Cheekur Nagaraja, et al, Role of Carbide Precipitates and Process Parameters on Achieving Grain Boundary Engineered Microstructure in a Ni-Based Superalloy. Metall Mater Trans A. 46(10) (2015) 4740-4754.

DOI: 10.1007/s11661-015-3064-4

Google Scholar

[17] Y.X. Xu, J.T. Lu, W.Y. Li, et al, Oxidation behaviour of Nb-rich Ni-Cr-Fe alloys: Role and effect of carbides precipitates. Corros Sci, (2018).

DOI: 10.1016/j.corsci.2018.05.040

Google Scholar

[18] D. Kim, C. Jang, W.S. Ryu, Oxidation characteristics and oxide layer evolution of Alloy 617 and Haynes 230 at 900°C and 1100°C. Oxid Met. 71(5) (2009) 271-293.

DOI: 10.1007/s11085-009-9142-5

Google Scholar

[19] S.L. Semiatin, R.C. Kramb, R.E. Turner, et al, Analysis of the homogenization of a nickel-base superalloy. Scripta Mater. 51(6) (2004) 491-495.

DOI: 10.1016/j.scriptamat.2004.05.049

Google Scholar

[20] K. Gopinath, A. Gogia, S. Kamat, et al, Tensile properties of Ni-Based superalloy 720Li: Temperature and strain rate effects. Metall Mater Trans A. 39(10) (2008) 2340-2350.

DOI: 10.1007/s11661-008-9585-3

Google Scholar

[21] C.Y. Gui, A. Sato, Y.F. Gu, et al, Microstructure and yield strength of UDIMET 720Li alloyed with Co-16.9 Wt Pct Ti. Metall Mater Trans A. 36(11) (2005) 2921-2927.

DOI: 10.1007/s11661-005-0065-8

Google Scholar

[22] F. Long, Y.S. Yoo, C.Y. Jo, et al, Formation of η and σ phase in three polycrystalline superalloys and their impact on tensile properties. Mater Sci Eng, A. 527(1-2) (2009) 361-369.

DOI: 10.1016/j.msea.2009.09.016

Google Scholar

[23] L. Gong, B. Chen, L. Zhang, et al, Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G. J Mater Sci Technol. 34(5) (2018) 811-820.

DOI: 10.1016/j.jmst.2017.03.023

Google Scholar

[24] J.J. Ruan, N. Ueshima, K. Oikawa, Phase transformations and grain growth behaviors in superalloy 718. J Alloys Compd. 737(2018) 83-91.

DOI: 10.1016/j.jallcom.2017.11.327

Google Scholar

[25] W.M. Gui, H.Y. Zhang, M. Yang, et al, Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd. 728(2017) 145-151.

DOI: 10.1016/j.jallcom.2017.08.287

Google Scholar

[26] J. Tiley, G.B. Viswanathan, R. Srinivasan, et al, Coarsening kinetics of γ' precipitates in the commercial nickel base Superalloy René 88 DT. Acta Mater. 57(8) (2009) 2538-2549.

DOI: 10.1016/j.actamat.2009.02.010

Google Scholar

[27] X.D. Lu, J.H. Du, Q. Deng, et al, Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. J Alloys Compd. 486(1) (2009) 195-198.

DOI: 10.1016/j.jallcom.2009.07.020

Google Scholar

[28] H. Zhang, Y. Liu, X. Chen, et al, Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content. J Alloys Compd. 727 (2017) 410-418.

DOI: 10.1016/j.jallcom.2017.08.137

Google Scholar

[29] J.T. Yeom, C.S. Lee, J.H. Kim, et al, Finite-element analysis of microstructure evolution in the cogging of an Alloy 718 ingot. Mater Sci Eng, A. 449 (2007) 722-726.

DOI: 10.1016/j.msea.2006.02.415

Google Scholar

[30] W. Sun, X.Z. Qin, J.T. Guo, et al, Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni–Fe–Cr based superalloy during long-term thermal exposure. Mater Des. 69 (2015) 70-80.

DOI: 10.1016/j.matdes.2014.12.030

Google Scholar