Numerical Simulation of Electromagnetic Phenomena and Solidification under a Pulsed Magnetic Field

Article Preview

Abstract:

The transient electromagnetic phenomena and solidification of Al-Cu alloy under a typical pulsed magnetic field (PMF) are numerically studied by a two-dimensional (2D) axisymmetric model. The results show that the magnetic flux density, eddy current density, Lorentz force and Joule heat all inherit the instantaneous and intermittent feature of the PMF, and their amplitudes and phases decrease with the increasing distance to the side surface of the ingot. The Lorentz force appears alternatively as pressure force and pull force mainly in the radial direction. Forced convection is induced in the liquid metal, and the flow field is composed of a clockwise vortex and a counter-clockwise vortex in the meridian plane of the ingot. The melt velocity is accompanied with a dramatic periodic oscillation. The temperature field in the ingot with the PMF tends uniform due to the mixing effect of the melt flow. However, the convection is damped soon after the solidification starts due to the increasing penetration resistance, and the temperature field gradually approximates that in the case without the PMF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-58

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q.S. Li, C.J. Song, H.B. Li, Q.J. Zhai, Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel, Mat. Sci. Eng. A-Struct. 466 (2007) 101-105.

DOI: 10.1016/j.msea.2007.03.061

Google Scholar

[2] Y.L. Gao, Q.S. Li, Y.Y. Gong, Q.J. Zhai, Comparative study on structural transformation of low-melting pure Al and high-melting stainless steel under external pulsed magnetic field, Mater. Lett. 61 (2007) 4011-4014.

DOI: 10.1016/j.matlet.2007.01.007

Google Scholar

[3] X.P. Ma, Y.J. Li, Y.S. Yang, Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417, J. Mater. Res. 24 (2009) 2670-2676.

DOI: 10.1557/jmr.2009.0326

Google Scholar

[4] X.P. Ma, Y.J. Li, Y.S. Yang, Grain refinement effect of pulsed magnetic field on solidified microstructure of superalloy IN718, J. Mater. Res. 24 (2009) 3174-3181.

DOI: 10.1557/jmr.2009.0382

Google Scholar

[5] B. Wang, Y.S. Yang, M.L. Sun, Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field, T. Nonferr. Metal. Soc. 20 (2010) 1685-1690.

DOI: 10.1016/s1003-6326(09)60358-7

Google Scholar

[6] J.W. Fu, Y.S. Yang, Formation of the solidified microstructure of Mg-Al-Zn alloy under a low-voltage pulsed magnetic field, J. Mater. Res. 26 (2011) 1688-1695.

DOI: 10.1557/jmr.2011.159

Google Scholar

[7] B. Wang, Y.Q. Shen, T.Y. Zhu, Effect of the pulsed magnetic field on the solute content in Mg-Gd-Y-Zr magnesium alloy, Special Casting & Nonferrous Alloys. 32 (2012) 407-409.

Google Scholar

[8] L. Zhang, Q. Zhou, Effect of low voltage pulsed magnetic field on microstructure and wear behaviour of eutectic Al-Si alloys, Mater. Sci. Tech.-Lond. 28 (2012) 1527-1530.

DOI: 10.1179/1743284712y.0000000072

Google Scholar

[9] Y.J. Li, W.Z. Tao, Y.S. Yang, Grain refinement of Al-Cu alloy in low voltage pulsed magnetic field, J. Mater. Process Tech. 212 (2012) 903-909.

DOI: 10.1016/j.jmatprotec.2011.11.018

Google Scholar

[10] J.W. Fu, Y.S. Yang, Microstructure and mechanical properties of Mg-Al-Zn alloy under a low-voltage pulsed magnetic field, Mater. Lett. 67 (2017) 252-255.

DOI: 10.1016/j.matlet.2011.09.021

Google Scholar

[11] Y.J. Li, Y.F. Teng, Y.S. Yang, Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel, Met. Mater. Int. 20 (2014) 527-530.

DOI: 10.1007/s12540-014-3018-1

Google Scholar

[12] Y.F. Teng, X.H. Feng, Y.J Li, Y.S. Yang, Grain refinement of as cast superalloy K4169 solidified with low voltage pulsed magnetic field, Mater. Res. Innov. 184 (2014) 352-356.

DOI: 10.1179/1432891714z.000000000834

Google Scholar

[13] T.J. Luo, H.M. Ji, F.Z. Zhao, X.H. Feng, Y.J. Li, Y.S. Yang, As-cast structure and tensile properties of AZ80 magnesium alloy DC cast with low-voltage pulsed magnetic field, T. Nonferr. Metal. Soc. 25 (2015) 2165-2171.

DOI: 10.1016/s1003-6326(15)63828-6

Google Scholar

[14] Y.J. Li, Y.F. Teng, X.H. Feng, Y.S. Yang, Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy, J. Mater. Sci. Technol. 33 (2017) 105-110.

DOI: 10.1016/j.jmst.2015.12.021

Google Scholar

[15] A. F. Kolesnichenko, A.D. Podoltsev, I.N. Kucheryavaya, Action of pulse magnetic-field on molten-metal, ISIJ Int. 34 (1994) 715-721.

DOI: 10.2355/isijinternational.34.715

Google Scholar

[16] X.P. Ma, Y.S. Yang, B. Wang, Effect of pulsed magnetic field on superalloy melt, Int. J. Heat Mass Tran. 52 (2009) 5285-5292.

DOI: 10.1016/j.ijheatmasstransfer.2009.06.042

Google Scholar

[17] G.J. Chen, Y.J. Zhang, Y.S. Yang, Modelling the unsteady melt flow under a pulsed magnetic field, Chinese Phys. B 22 (2013) 333-337.

DOI: 10.1088/1674-1056/22/12/124703

Google Scholar

[18] Information on https://www.ansys.com/products/electronics/ansys-maxwell.

Google Scholar

[19] Information on https://www.ansys.com/products/fluids/ansys-fluent.

Google Scholar

[20] E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, P.S. Grant, A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an A1-15Cu alloy, Acta Mater. 70 (2014) 228-239.

DOI: 10.1016/j.actamat.2014.02.024

Google Scholar