Effects of Different Mold Temperature on Dendrite Morphology of Sn-Bi Alloy in Directional Solidification

Article Preview

Abstract:

The directional solidification process of Sn–10 wt% Bi alloy with low melting point was observed by synchrotron X-ray imaging technology. The mold temperature was controlled, and the dynamic images of a series of alloy solidification behavior were obtained. The results show that columnar crystal grows in dendrite morphology. It is also found that dendrite morphology changes at different mold temperature. With the decrease of the mold temperature, the dendrite morphology begins to change from irregular to regular, and finally, the primary dendrites and the secondary dendrites are perpendicular to each other.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-63

Citation:

Online since:

January 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kato, Morphological stability of a solid–liquid interface growing in a cylindrical mold, J. Cryst. Growth. 455 (2016) 19-28.

DOI: 10.1016/j.jcrysgro.2016.09.020

Google Scholar

[2] W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, The redistribution of solute atoms during the solidification of metals, Acta Metall. 1 (1953) 428-437.

DOI: 10.1016/0001-6160(53)90126-6

Google Scholar

[3] P. Peng, Influence of thermal stabilization on microstructure at the solid/liquid interface in a directionally solidified Sn-Ni peritectic alloy, J. Alloy. Compd. 693 (2017) 799-807.

DOI: 10.1016/j.jallcom.2016.09.283

Google Scholar

[4] H. Neumann-Heyme, K. Eckert, C. Beckermann, General evolution equation for the specific interface area of dendrites during alloy solidification. Acta Mater. 140 (2017) 87-96.

DOI: 10.1016/j.actamat.2017.08.021

Google Scholar

[5] R. Mendoza, J. Alkemper, P. Voorhees, The morphological evolution of dendritic microstructures during coarsening, Metall. Mater. Trans. A. 34 (2003) 481-489.

DOI: 10.1007/s11661-003-0084-2

Google Scholar

[6] R.H. Mathiesen, L. Arnberg, X-ray radiography observations of columnar dendritic growth and constitutional undercooling in an Al–30wt%Cu alloy, Acta Mater. 53 (2005) 947-956.

DOI: 10.1016/j.actamat.2004.10.050

Google Scholar

[7] V.H. Etgens, M.C.M. Alves, A. Tadjeddine, In situ surface X-ray diffraction studies of electrochemical interfaces at a high-energy third-generation synchrotron facility, Electrochim. Acta 45 (1999) 591-599.

DOI: 10.1016/s0013-4686(99)00237-6

Google Scholar

[8] T. Wang, F. Cao, P. Zhou, H. Kang, Z. Chen, Y. Fu, T. Xiao, W. Huang, Q. Yuan, Study on diffusion behavior and microstructural evolution of Al/Cu bimetal interface by synchrotron X-ray radiography, J. Alloys Compd. 616 (2014) 550-555.

DOI: 10.1016/j.jallcom.2014.07.172

Google Scholar

[9] J. Zhu, T. Wang, F. Cao, W. Huang, H. Fu, Z. Chen, Real time observation of equiaxed growth of Sn–Pb alloy under an applied direct current by synchrotron microradiography, Mater. Lett. 89 (2012) 137-139.

DOI: 10.1016/j.matlet.2012.08.094

Google Scholar

[10] Q. Dong, J. Zhang, J. Dong, Y. Dai, F. Bian, H. Xie, Y. Lu, B. Sun, Anaxial columnar dendrites in directional solidification of an Al–15 wt.% Cu alloy, Mater. Lett. 65 (2011) 3295-3297.

DOI: 10.1016/j.matlet.2011.07.013

Google Scholar

[11] J. Zhu, T. Wang, F. Cao, W. Huang, H. Fu, Z. Chen, Real time observation of equiaxed growth of Sn–Pb alloy under an applied direct current by synchrotron microradiography, Mater. Lett. 89 (2012) 137-139.

DOI: 10.1016/j.matlet.2012.08.094

Google Scholar

[12] T. Chen, L. Huang, X. Huang, Y. Ma, Y. Hao, Effects of mould temperature and grain refiner amount on microstructure and tensile properties of thixoforged AZ63 magnesium alloy, J. Alloy. Compd. 556 (2013) 167-177.

DOI: 10.1016/j.jallcom.2012.12.140

Google Scholar

[13] S.K. Rathi, A. Sharma, M.D. Sabatino, Effect of mould temperature, grain refinement and modification on hot tearing test in Al–7Si–3Cu alloy, Eng. Fail. Anal, 79 (2017) 592-605.

DOI: 10.1016/j.engfailanal.2017.04.037

Google Scholar