Carrier Flotation: State of the Art and its Potential for the Separation of Fine and Ultrafine Mineral Particles

Article Preview

Abstract:

Critical raw materials (CRMs) are of primary importance for energy storage systems as needed for electromobility. Many mineral deposits which contain CRMs are low-grade ores. To liberate the CRMs, a grinding of the mineral ores to very fine sizes below 20 µm particle size is necessary. However, the present class of industrial flotation plants fail to extract such fine and ultrafine particles. To improve the recovery in fine particle flotation, techniques have been developed which attempt to agglomerate the fine valuable particles into larger aggregates which subsequently can be separated by established technologies such as froth flotation. Carrier flotation is one of these techniques. The present work reviews the state of the art of this technique for the recovery of fines and ultrafines.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-133

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tatu Miettinen, John Ralston, and Daniel Fornasiero. The limits of fine particle flotation. Minerals Engineering, 23(5):420–437, (2010).

DOI: 10.1016/j.mineng.2009.12.006

Google Scholar

[2] TV Subrahmanyam and Eric Forssberg. Froth stability, particle entrainment and drainage in flotation—a review. International Journal of Mineral Processing, 23(1-2):33–53, (1988).

DOI: 10.1016/0301-7516(88)90004-x

Google Scholar

[3] Tom Leistner, Urs A Peuker, and Martin Rudolph. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Minerals Engineering, 109:1–9, (2017).

DOI: 10.1016/j.mineng.2017.02.005

Google Scholar

[4] Graeme J Jameson. New directions in flotation machine design. Minerals Engineering, 23(11- 13):835–841, (2010).

DOI: 10.1016/j.mineng.2010.04.001

Google Scholar

[5] Leonard J Warren. Shear-flocculation of ultrafine scheelite in sodium oleate solutions. Journal of Colloid and Interface Science, 50(2):307–318, (1975).

DOI: 10.1016/0021-9797(75)90234-9

Google Scholar

[6] Ernest W Greene and James B Duke. Selective froth flotation of ultrafine minerals or slimes. Trans. AIME, 223:389–395, (1962).

Google Scholar

[7] WJ Trahar and LJ Warren. The flotability of very fine particles—a review. International Journal of Mineral Processing, 3(2):103–131, (1976).

DOI: 10.1016/0301-7516(76)90029-6

Google Scholar

[8] W Hu, DZ Wang, and G Qu. Principle and application of carrier flotation. J. Cent. South. Inst. Min. metall, 4:408–414, (1987).

Google Scholar

[9] TV Subrahmanyam and KS Eric Forssberg. Fine particles processing: shear-flocculation and carrier flotation: a review. International Journal of Mineral Processing, 30(3-4):265–286, (1990).

DOI: 10.1016/0301-7516(90)90019-u

Google Scholar

[10] KA Matis, GP Gallios, and KA Kydros. Separation of fines by flotation techniques. Separations Technology, 3(2):76–90, (1993).

DOI: 10.1016/0956-9618(93)80007-e

Google Scholar

[11] Elizaveta Forbes. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques. International Journal of Mineral Processing, 99(1-4):1–10, (2011).

DOI: 10.1016/j.minpro.2011.02.001

Google Scholar

[12] JS Laskowski. An introduction: physicochemical methods of separation. In Colloid chemistry in mineral processing, pages 225–241. Elsevier Amsterdam, (1992).

DOI: 10.1016/b978-0-444-88284-4.50012-3

Google Scholar

[13] P Parsonage. Coating and carrier methods for enhancing magnetic and flotation separations. In Colloid chemistry in mineral processing, pages 361–394. Elsevier Amsterdam, (1992).

DOI: 10.1016/b978-0-444-88284-4.50016-0

Google Scholar

[14] Jorge Rubio and Heinz Hoberg. The process of separation of fine mineral particles by flotation with hydrophobic polymeric carrier. International journal of mineral processing, 37(1-2):109– 122, (1993).

DOI: 10.1016/0301-7516(93)90008-x

Google Scholar

[15] Xiangfeng Zhang, Yuehua Hu, Wei Sun, and Longhua Xu. The effect of polystyrene on the carrier flotation of fine smithsonite. Minerals, 7(4), (2017).

DOI: 10.3390/min7040052

Google Scholar

[16] YH Chia and P Somasundaran. A theoretical approach to flocculation in carrier flotation for beneficiation of clay. Colloids and Surfaces, 8(2):187–202, (1983).

DOI: 10.1016/0166-6622(83)80084-5

Google Scholar

[17] Courtney Young and Gerald H Luttrell. Versatile use of alkyl hydroxamate in kaolin beneficiation technologies: flotation, selective separation and magnetic separation. In Separation technologies for minerals, coal, and earth resources, pages 655–665. SME, (2012).

Google Scholar

[18] DW Fuerstenau, C Li, and JS Hanson. Shear flocculation and carrier flotation of fine hematite. In Production and Processing of Fine Particles, pages 329–335. Elsevier, (1988).

DOI: 10.1016/b978-0-08-036448-3.50039-6

Google Scholar

[19] L Valderrama and J Rubio. High intensity conditioning and the carrier flotation of gold fine particles. International Journal of Mineral Processing, 52(4):273–285, (1998).

DOI: 10.1016/s0301-7516(97)00068-9

Google Scholar

[20] Erico Tabosa and Jorge Rubio. Flotation of copper sulphides assisted by high intensity conditioning (hic) and concentrate recirculation. Minerals Engineering, 23(15):1198–1206, (2010).

DOI: 10.1016/j.mineng.2010.08.004

Google Scholar

[21] G. Ateşok, F. Boylu, and M.S. Çelĭk. Carrier flotation for desulfurization and deashing of difficult-to-float coals. Minerals Engineering, 14(6):661–670, (2001).

DOI: 10.1016/s0892-6875(01)00058-9

Google Scholar

[22] Jürgen J Hubbuch, Dennis B Matthiesen, Timothy J Hobley, and Owen RT Thomas. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison. Bioseparation, 10(1-3):99–112, (2001).

DOI: 10.1023/a:1012034923621

Google Scholar

[23] Matthias Franzreb, Martin Siemann-Herzberg, Timothy J Hobley, and Owen RT Thomas. Protein purification using magnetic adsorbent particles. Applied microbiology and biotechnology, 70(5):505–516, (2006).

DOI: 10.1007/s00253-006-0344-3

Google Scholar

[24] T Banert and UA Peuker. Synthesis of magnetic beads for bio-separation using the solution method. Chemical Engineering Communications, 194(6):707–719, (2007).

DOI: 10.1080/00986440600992750

Google Scholar

[25] Robert Stange, Felix Lenk, Kerstin Eckert, Stephan Lenk, Thomas Bley, and Elke Boschke. A new method for mixing of suspended superparamagnetic beads using variable electromagnetic fields. Engineering in Life Sciences, 15(7):727–732, (2015).

DOI: 10.1002/elsc.201500003

Google Scholar

[26] NK Tussupbayev, NN Rulyov, and OV Kravtchenco. Microbubble augmented flotation of ultrafine chalcopyrite from quartz mixtures. Mineral Processing and Extractive Metallurgy, 125(1):5–9, (2016).

DOI: 10.1179/1743285515y.0000000014

Google Scholar

[27] Nickolaj Rulyov and Nessipbay Tussupbayev. Combined microflotation as a powerful technology of fine ferrous ore beneficiation.

Google Scholar

[28] VD Samygin, AA Barskii, and SM Angelova. Mechanism of mutual flocculation of particles differing in size. COLLOID JOURNAL-USSR, 30(4):435, (1968).

Google Scholar

[29] M v Smoluchowski. Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Zeitschrift für physikalische Chemie, 92(1):129–168, (1918).

DOI: 10.1515/zpch-1918-9209

Google Scholar

[30] Marian Von Smoluchowski. Drei vorträge über diffusion. brownsche bewegung und koagulation von kolloidteilchen. Z. Phys., 17:557–585, (1916).

Google Scholar

[31] TR Camp and PC Stein. Velocity gradients in laboratory and full-scale systems. Journal Boston Society of Civil Engineering, ASCE, 30:219–237, (1943).

Google Scholar

[32] VG Levich and G Physicochemical Hydrodynamics. Prentice-hall: Englewood cliffs. NJ, USA, (1962).

Google Scholar

[33] Wang Dianzuo, Qu Guanzhou, and Hu Weibai. The effect of carrier—promoting aggregation of coarse particles in fine particle flotation. In Production and Processing of Fine Particles, pages 309–316. Elsevier, (1988).

DOI: 10.1016/b978-0-08-036448-3.50037-2

Google Scholar

[34] T Leistner, M Embrechts, T Leißner, S Chehreh Chelgani, I Osbahr, R Möckel, UA Peuker, and M Rudolph. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Minerals Engineering, 96:94–98, (2016).

DOI: 10.1016/j.mineng.2016.06.020

Google Scholar