Corrosion of Carbon Free and Bonded Refractories for Application in Steel Ingot Casting: An Approach for Improving Steel Quality

Article Preview

Abstract:

Impurities and resulting inclusions are an issue when processing higher amounts of scrap during steel making. To increase the recycling rate, the removal of impurities from the scrap in form of inclusions is of great interest. In previous studies was found that inclusions attach primarily on carbon containing refractories, especially if on their surface an interfacial layer (1–3 µm thickness) was formed in-situ. This study investigates the formation mechanism of this in-situ layer in detail by application of computer tomography (CT) measurements on two scales. The large scale CT scans visualized the general appearance whereas the small scale measurement regarded the in-situ formed layer and the attached inclusions in detail. Based on these measurements, previous results and a literature review it was concluded that the layer formed mainly due to carbothermally reduced impurities which moved to the decarburized surface of the refractory in gaseous form and enhanced sintering of the surface region to develop the layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-176

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Grobler F, Minnitt R. The increasing role of direct reduced iron in global steelmaking. The Journal of the South African Institute of Mining and Metallurgy 1999;99(2):111-6.

Google Scholar

[2] Yellishetty M, Mudd G, Ranjith P, Tharumarajah A. Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Science and Policy 2011;14:650-63.

DOI: 10.1016/j.envsci.2011.04.008

Google Scholar

[3] Peterson R. Issues in the melting and reclamation of aluminum scrap. JOM 1995;47(2):27-9.

DOI: 10.1007/bf03221402

Google Scholar

[4] Apelian D, Mutharasan R, Ali S. Removal of inclusions from steel melts by filtration. Journal of Material Science 1985;20:3501-14.

DOI: 10.1007/bf01113756

Google Scholar

[5] Abraham S, Bodnar R, Raines J. Inclusion engineering and the metallurgy of calcium treatment. Iron and Steel Technology 2014;July:57-68.

Google Scholar

[6] Ali S, Apelian D, Mutharasan R. Rening of aluminum and steel melts by the use of multi-cellular extruded ceramic filters. Canadian Metallurgical Querterly 1985;24(4):311-8.

DOI: 10.1179/cmq.1985.24.4.311

Google Scholar

[7] Janiszewski K. Industrial application of liquid steel filtration out of dispersed nonmetallic phase in the continuous casting machine. Metalurgija 2013;52(1):71-4.

Google Scholar

[8] Davila-Maldonado O, Adams A, Oliveira L, Alquist B, Morales R. Simulation of fluid and inclusions dynamics during filtration operations of ductile iron melts using foam filters. Metallurgical and Materials Transactions B 2008;39B:818-39.

DOI: 10.1007/s11663-008-9190-2

Google Scholar

[9] Asad A, Kratzsch C, Dudczig S, Aneziris C, Schwarze R. Numerical study of particle filtration in an induction crucible furnace. International Journal of Heat and Fluid Flow 2016;62 Part B:299- 312.

DOI: 10.1016/j.ijheatfluidflow.2016.10.002

Google Scholar

[10] Singh S. Mechanism of alumina buildup in tundish nozzles during continuous casting of aluminum-killed steels. Metallurgical Transactions 1974;5:2165-78.

DOI: 10.1007/bf02643930

Google Scholar

[11] Zienert T, Dudczig S, Fabrichnaya O, Aneziris C. Interface reactions between liquid iron and alumina-carbon refractory filter materials. Ceramics International 2015;41:2089-98.

DOI: 10.1016/j.ceramint.2014.10.004

Google Scholar

[12] Dudczig S, Aneziris C, Emmel M, Schmidt G, Hubalkova J, Berek H. Characterization of carbonbonded alumina filters with active or reactive coatings in a steel casting simulator.Ceramics International 2014;40:16727-42.

DOI: 10.1016/j.ceramint.2014.08.038

Google Scholar

[13] Fruhstorfer J, Schöttler L, Dudczig S, Schmidt G, Gehre P,Aneziris C. Erosion and corrosion of alumina refractory by ingot casting steels. Journal of the European Ceramic Society 2016;36:1299-306.

DOI: 10.1016/j.jeurceramsoc.2015.11.038

Google Scholar

[14] Fruhstorfer J, Dudczig S, Gehre P, Schmidt G, Brachhold N, Schöttler L, et al. Corrosion of carbon free and bonded refractories for application in steel ingot casting. Steel Research International 2016;87(8):1014-23.

DOI: 10.1002/srin.201600023

Google Scholar

[15] Fruhstorfer J, Dudczig S, Schöttler L, Aneziris C. Corrosion of alumina and mullite based refractories by an ingot casting steel. China's Refractories 2018;27(1):14-9.

DOI: 10.1002/srin.201600023

Google Scholar

[16] Poirier J, Thillou B. Contribution of the refractory material of submerged nozzles to clogging. Stahl und Eisen 1994;Special Issue publishing Proceedings of 37th Int. Colloquium on Refractories:114-8.

Google Scholar

[17] Fruhstorfer J, Dudczig S, Rudolph M, Schmidt G, Brachhold N, Schöttler L, et al. Interface analyses between a case-hardened ingot casting steel and carbon containing and carbon free refractories. Metallallurgical and Materials Transactions B 2018;.

DOI: 10.1007/s11663-018-1216-9

Google Scholar

[18] Henschel S, Gleinig J, Lippmann T, Dudczig S, Aneziris C,Weidner A, et al. Effect of crucible material on detrimental nonmetallic inclusions and the resulting mechanical properties of 18crnimo7-6 (aisi 4820) steel. Advanced Engineering Materials 2017;19(9):1700199-1-12.

DOI: 10.1002/adem.201700199

Google Scholar

[19] Khanna R, Ikram-Ul-Haq M, Wang Y, Seetharaman S, Sahajwalla V. Chemical interactions of alumina–carbon refractories with molten steel at 1823 K (1550 ◦C): Implications for refractory degradation and steel quality. Metallurgical and Materials Transactions B 2011;42B:677-84.

DOI: 10.1007/s11663-011-9520-7

Google Scholar

[20] Khanna R, Kongkarat S, Seetharaman S, Sahajwalla V. Carbothermic reduction of alumina at 1823 K in presence of molten steel: a sessile drop investigation. ISIJ International 2012;52(6):992-9.

DOI: 10.2355/isijinternational.52.992

Google Scholar

[21] Khanna R, Ikram-Ul-Haq M, Seetharaman S, Sahajwalla V. Carbothermic reduction of alumina at 1823K: On the role of molten iron and reaction mechanisms. ISIJ International 2016;56(7):1300- 2.

DOI: 10.2355/isijinternational.isijint-2016-037

Google Scholar

[22] Storti E, Dudczig S, Schmidt A, Schmidt G, Aneziris C. Filter functionalization with carbon nanotubes and alumina nanosheets for advanced steel filtration. Steel Research International 2017;87(9999).

DOI: 10.1002/srin.201700142

Google Scholar

[23] Schmidt A, Salomon A, Dudczig S, Berek H, Rafaja D, Aneziris C. Functionalized carbonbonded filters with an open porous alumina coating: Impact of time on interactions and steel cleanliness. Advanced Engineering Materials 2017;18.

DOI: 10.1002/adem.201700170

Google Scholar

[24] Fruhstorfer J, Möhmel S, Thalheim M, Schmidt G, Aneziris C. Microstructure and strength of fused high alumina materials with 2.5 wt% zirconia and 2.5 wt% titania additions for refractory applications. Ceramics International 2015;41:10644-53.

DOI: 10.1016/j.ceramint.2015.04.164

Google Scholar

[25] Fruhstorfer J, Schafföner L, Werner J, Wetzig T, Schöttler L, Aneziris C. Thermal shock performance of refractories for application in steel ingot casting. Journal of Ceramic Science and Technology 2016;7(2):173-82.

Google Scholar

[26] Fruhstorfer J, Aneziris C. The In uence of the Coarse Fraction on the Porosity of Refractory Castables. Journal of Ceramic Science and Technology 2014;5(2):155-66.

Google Scholar

[27] Roungos V, Aneziris C. Improved thermal shock performance of Al2O3C refractories due to nanoscaled additives. Ceramics International 2012;38(2):919-27.

DOI: 10.1016/j.ceramint.2011.08.011

Google Scholar

[28] Jacob K, Gupta S. Calciothermic reduction of TiO2: A diagrammatic assessment of the thermodynamic limit of deoxidation. JOM 2009;61(5):56-9.

DOI: 10.1007/s11837-009-0072-0

Google Scholar

[29] Halmann M, Frei A, Steinfeld A. Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation. Energy 2007;32:2420-7.

DOI: 10.1016/j.energy.2007.06.002

Google Scholar

[30] Balomenos E, Panias D, Paspaliaris I. Theoretical investigation of the volatilization phenomena occurring in the carbothermic reduction of alumina. World of Metallurgy-ERZMETALL 2011;64(6):312-20.

Google Scholar

[31] Eustathopoulos N, Nicholas MG, Drevet B . Wettability at high temperatures; vol. 3 of Pergamon Materials Series. Pergamon Amsterdam Lausanne New York Oxford Shannon Singapore Tokyo; (1999).

DOI: 10.1016/s1470-1804(99)80002-9

Google Scholar

[32] Cox J, Pidgeon L. An investigation of the aluminum-oxygen-carbon system. Canadian Journal of Chemistry 1963;41:671-83.

Google Scholar

[33] Yanagida H, Kröger F. The system Al-O. Journal of the American Ceramic Society 1968;51(12):700-6.

Google Scholar

[34] Hafner H, Kreidl N, Weidel R. Optical and physical properties of some calcium aluminate glasses. Journal of the American Ceramic Society 1958;41(8):315-23.

DOI: 10.1111/j.1151-2916.1958.tb12923.x

Google Scholar

[35] Hosono H, Yamazaki K, Abe Y. Dopant-free ultravioletsensitive calcium aluminate glasses. Journal of the American Ceramic Society 1985;68(11):C304-5.

DOI: 10.1111/j.1151-2916.1985.tb16151.x

Google Scholar

[36] Gehre P, Schmidt A, Dudczig S, Hubalkova J, Aneziris C, Child N, et al. Interaction of slipand ame-spray coated carbonbonded alumina filters with steel melts. Journal of the American Ceramic Society 2018;.

DOI: 10.1111/jace.15431

Google Scholar