[1]
R. Guoxing, X. Songwen, X. Meiqiu, P. Bing, F Youqi, W. Fenggang, X. Xing, 2016, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system, pp.211-218. In R. G. Reddy, P. Chaubal, P. C. Pistorius, and U. Pal [eds.]. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer.
DOI: 10.1007/978-3-319-48769-4_22
Google Scholar
[2]
T. Elwert, D. Goldmann, T. Schirmer, K. Strauß, 2012, Phase composition of high lithium slags from the recycling of lithium ion batteries. World Metall. ERZMETALL. 65 (3): 163-171.
Google Scholar
[3]
T. Elwert, D. Goldmann, T. Schirmer, K. Strauß, 2014, Affinity of rare earth elements to silico‐phosphate phases in the system Al2O3‐CaO‐MgO‐P2O5‐SiO2. Chem.-Ing.-Tech. 86(6): 840–847.
DOI: 10.1002/cite.201300168
Google Scholar
[4]
S. Simon et al. 2018 The fate of iron during the alkali-activation of synthetic (CaO-)FeO x -SiO 2 slags: An Fe K-edge XANES study, J Am Ceram Soc. 101:2107–2118.
DOI: 10.1111/jace.15354
Google Scholar
[5]
P. A. Zhdanov, I. F. Seregina, M. A. Bol'shov, A.I. Volkov, A. N. Seregin, 2016, Determination of forms of element occurrence in samples of vanadium slag and slime. Inorg. Mater. 52(14): 1431-1439.
DOI: 10.1134/S0020168516140144
Google Scholar
[6]
D. Pavlyuchkov. D. Dilner, G. Savinykh, O. Fabrichnaya, 2016, Phase equilibria in the ZrO2–MgO–MnOx system J. Am. Ceram. Soc. 99(9): 3136-3145.
DOI: 10.1111/jace.14327
Google Scholar
[7]
M. E. Fleet: X-ray diffraction and spectroscopic studies on the structure of silicate glasses in short course in silicate melts, C. M. Scarfe (Ed.) Mineralog. Soc. Canada , Ontario 1986 1-35.
Google Scholar
[8]
J. Wong, C. A. Angell: Glass structure by spectroscopy, Marcel Dekker Inc. New York (1976).
Google Scholar
[9]
Y. Okamoto et al. 2017 Chemical state analysis of high-temperature molten slag components by using high-energy XAFS, Journal of Molecular Liquids 232 285–289 http://dx.doi.org/10.1016/j.molliq.2017.02.072.
DOI: 10.1016/j.molliq.2017.02.072
Google Scholar
[10]
H. Rietveld 1969, A profile refinement method for nuclear and magnetic structures. Journal of applied Crystallography, 2(2), 65-71.
Google Scholar
[11]
M. Klinger, M. Reinmöller, M. Schreiner, B. Meyer, 2014, Von der Aschechemie zur Werkstoffkorrosion bei der Vergasung fester Einsatzstoffe. Chemie Ingenieur Technik, 86(10), 1716-1725. 2016.
DOI: 10.1002/cite.201400030
Google Scholar
[12]
E. Maire and P. J. Withers, 2014, Quantitative X-ray tomography. International materials reviews, 59(1), 1-43.44(6): 436-441.
DOI: 10.1002/xrs.2619
Google Scholar
[13]
Y. Lavallée, B. Cai, R. Coats, J. E. Kendrick, F. W. von Aulock, P.A., Wallace, N. .Le Gall, J. Godinho, K. Dobson, R. Atwood, M. Holness, 2017, April). Illuminating magma shearing processes via synchrotron imaging. In EGU General Assembly Conference Abstracts (Vol. 19, p.17616).
Google Scholar
[14]
B. Cai, J. Wang, A. Kao, K. Pericleous, A. B. Phillion, R. C. Atwood, P. D. Lee, 2016 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Materialia, 117, 160-169.
DOI: 10.1016/j.actamat.2016.07.002
Google Scholar
[15]
V. Chubarov, D. Suvorova, A. Mukhetdinova, A. Finkelshtein, 2015, X‐ray fluorescence determination of the manganese valence state and speciation in manganese ores. X-Ray Spectrom.
DOI: 10.1002/xrs.2619
Google Scholar
[16]
Y. Fujii, Y. Nakai, Y. Uchida, N. Kikuchi, Y. Miki. 2016. Fundamental investigation of reduction and dissolution behavior of manganese ore at high temperature, pp.63-70. In: Reddy R.G., Chaubal P., Pistorius P.C., Pal U. [eds.] Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer.
DOI: 10.1007/978-3-319-48769-4_6
Google Scholar
[17]
G. T. Seidler, D. R. Mortensen, A. S. Ditter, N. A. Ball, A. J. Remesnik, 2016, A Modern Laboratory XAFS Cookbook. J. Phys. Conf. Ser. 712: 012015.
DOI: 10.1088/1742-6596/712/1/012015
Google Scholar
[18]
G. T. Seidler, D. R. Mortensen, A. J. Remesnik, J. I. Pacold, N. A. Ball, N. Barry, M. Styczinski, O. R. Hoidn, 2014, A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. Rev. Sci. Instrum. 85: 113906.
DOI: 10.1063/1.4901599
Google Scholar
[19]
W. Malzer, D. Grötzsch, R. Gnewkow, C. Schlesiger, S. U. Urban, S. Debeer, B. Kanngießer.19-24 June 2016. A Laboratory Spectrometer for X-ray Emission Spectroscopy (XES) in Catalysis Research. Poster presented at: European Conference on X-ray Spectrometry. Gothenburg, Sweden.
DOI: 10.1063/1.5035171
Google Scholar
[20]
C. Schlesiger, L. Anklamm, H. Stiel, W. Malzer, B. Kanngießer, 2015, XAFS spectroscopy by an X-ray tube based spectrometer using a novel type of HOPG mosaic crystal and optimized image processing. J. Anal. Atom. Spectrom. 30(5): 1080-1085.
DOI: 10.1039/c4ja00303a
Google Scholar
[21]
H. V. Le, S. Parishan, A. Sagaltchik, C. Göbel, C. Schlesiger, W. Malzer, A. Trunschke, R. Schomäcker, A. Thomas, 2017, Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catal. 7(2): 1403−1412.
DOI: 10.1021/acscatal.6b02372
Google Scholar
[22]
M. Dimitrakopoulou, X. Huang, J. Kröhnert, D. Teschner, S. Praetz, C. Schlesiger, W. Malzer, C. Janke, E. Schwab, F. Rosowski, H. Kaiser, S. Schunk, R. Schlögl, A. Trunschke, 2017, Insights into structure and dynamics of (Mn,Fe)Ox-promoted Rh nanoparticles. Faraday Discuss. Accepted.
DOI: 10.1039/C7FD00215G
Google Scholar
[23]
Z. Németh, J. Szlachetko, E. G. Bajnóczi, G. Vankó, 2016, Laboratory von Hámos X-ray Spectroscopy for Routine Sample Characterization. Rev. Sci. Instrum. 87: 103105.
DOI: 10.1063/1.4964098
Google Scholar
[24]
M. Szlachetko, M. Berset, J.-C. Dousse, J. Hoszowska, J. Szlachetko, 2013, High-resolution Laue-type DuMond curved crystal spectrometer. Rev. Sci. Instrum. 84: 093104.
DOI: 10.1063/1.4821621
Google Scholar