[1]
W. Matthes, A. Vollpracht, Y. Villagrán, S. Kamali-Bernard, D. Hooton, E. Gruyaert, M. Soutsos, N. De Belie, Ground granulated blast-furnace slag, in: RILEM State-of-the-Art Reports, 2018, pp.1-53.
DOI: 10.1007/978-3-319-70606-1_1
Google Scholar
[2]
Z. Sekulic, M. Petrov, D. Zivanovic, Mechanical activation of various cements, International Journal of Mineral Processing, 74 (2004) S355-S363.
DOI: 10.1016/j.minpro.2004.07.022
Google Scholar
[3]
A. Ehrenberg, Current developments in the manufacturing and utilization of granulated blast furnace slag, ZKG International, 63 (2010) 52-66.
Google Scholar
[4]
V. Tomková, F. Ovčačík, J. Vlček, H. Ovčačíková, M. Topinková, M. Vavro, P. Martinec, Potential modification of hydration of alkali activated mixtures from granulated blast furnace slag and fly ash, Ceramics - Silikaty, 56 (2011) 168-176.
DOI: 10.37904/metal.2020.3455
Google Scholar
[5]
P. Ayturan, M. Tokyay, Alkali activation of granulated blastfurnace slag and fly ash, in: 33rd International Conference on Cement Microscopy 2011, 2011, pp.149-171.
Google Scholar
[6]
R. Tänzer, A. Ehrenberg, D. Stephan, Concrete based on alkali-activated granulated blast-furnace slag (1), Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology, 78 (2012) 25-33.
Google Scholar
[7]
R. Tänzer, A. Ehrenberg, D. Stephan, Concrete based on alkali-activated granulated blast-furnace slag (2), Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology, 78 (2012) 44-57.
Google Scholar
[8]
H. Weimar, W. Wulfert, H.M. Ludwig, B. Moser, Mobilization of the hydraulically active phases in LD slags by producing ultrafine material, Cement International, 15 (2017) 76-86.
Google Scholar
[9]
S. Mende, F. Stenger, W. Peukert, J. Schwedes, Production of sub-micron particles by wet comminution in stirred media mills, Journal of Materials Science, 39 (2004) 5223-5226.
DOI: 10.1023/b:jmsc.0000039214.12131.58
Google Scholar
[10]
F. Stenger, S. Mende, J. Schwedes, W. Peukert, The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills, Powder Technology, 156 (2005) 103-110.
DOI: 10.1016/j.powtec.2005.04.005
Google Scholar
[11]
K. Ohenoja, S. Breitung-Faes, P. Kinnunen, M. Illikainen, J. Saari, A. Kwade, J. Niinimäki, Ultrafine grinding of limestone with sodium polyacrylates as additives in ordinary portland cement mortar, Chemical Engineering and Technology, 37 (2014) 787-794.
DOI: 10.1002/ceat.201300707
Google Scholar
[12]
F. Flach, S. Breitung-Faes, A. Kwade, Model based process optimization of nanosuspension preparation via wet stirred media milling, Powder Technology, 331 (2018) 146-154.
DOI: 10.1016/j.powtec.2018.03.011
Google Scholar
[13]
M. Schäfer, V.T. Kemtchou, U.A. Peuker, The grinding of porous ion exchange particles, Powder Technology, 291 (2016) 14-19.
DOI: 10.1016/j.powtec.2015.12.003
Google Scholar
[14]
T. Mütze, Modellhafte Beschreibung des Beanspruchungsverhaltens geschlossener Gutbetten, Modeling of the Stress Behavior of Confined Particle Beds, Chemie Ingenieur Technik, 86 (2014) 814-820.
DOI: 10.1002/cite.201300181
Google Scholar
[15]
T. Mütze, Energy dissipation in particle bed comminution, International Journal of Mineral Processing, 136 (2015) 15-19.
DOI: 10.1016/j.minpro.2014.10.004
Google Scholar
[16]
W.Wassing, , V.E. Tigges, Die Die Bedeutung des Silikats in Hüttensanden für die Frühfestigkeit von Hochofenzementmörteln und -betonen. Cement International 6 (2008), 2-12.
Google Scholar
[17]
M. Fylak, H. Pöllmann, R. Wenda, Application of cryo scanning electron microscopy for the investigation of early OPC-hydration, 34th International Conference on Cement Microscopy (2012) 116-137.
Google Scholar