[1]
Jahrbuch Stahl 1992, German, Verlag Stahleisen, Düsseldorf, Germany, Nov. (1991).
Google Scholar
[2]
Jahrbuch Stahl 2016, German, Verlag Stahleisen, Düsseldorf, Germany, Nov. (2015).
Google Scholar
[3]
Statistiken | stahl-online.de, German, VDEh and WV-Stahl, Sept. 2017, http://www.stahlonline. de/index.php/statistiken/ (visited on 01/23/2018).
Google Scholar
[4]
L. Savov and D. Janke, Recycling of scrap in steelmaking in view of the tramp element problem, Metall 52.6 (June 1998), p.374–383.
Google Scholar
[5]
Various, Europäische Stahlschrottsortenliste, German, June 1, 1995, 7 pp.
Google Scholar
[6]
K. Born, Die Entstehung von Oberflächenfehlern bei der Warmverarbeitung von Stahl durch Kupfer- und Zinnverunreinigungen, Bericht Nr. 854 des Werkstoffausschusses des Vereins Deutscher Eisenhüttenleute, German, Stahl und Eisen 73.20 (Sept. 1953), p.1268–1280.
DOI: 10.1002/bbpc.18960022713
Google Scholar
[7]
J. Degenkolbe, G. Kalwa, and K. Knaup, Wirkung von Begleitelementen auf die Werkstoffeigenschaften, German, Stahl und Eisen 108.11 (May 1988).
Google Scholar
[8]
I. Zigalo, Y. Baptizmanskij, Y. Vyatkin, A. Velichko, E. Shakhpazov, and Y. Grishchenko, Copper in Steel and Problems of Removing It, Steel in the USSR 21.7 (1991), p.299–302.
Google Scholar
[9]
V. Leroy et al., Effects of tramp elements in flat and long products, Technical Steel Research - Primary Steelmaking - Report EUR 16672 EN, Englisch, Europäische Kommission, Brüssel, Belgien, 1995, 174 pp.
Google Scholar
[10]
H. Rösner, Einfluß der über den Schrott aus dem Altautorecycling und aus Militärschrott eingebrachten metallischen Begleitelemente auf die Stahleigenschaften: Abschlußbericht, German, Europäische Komission, Brussels, BE, (1996).
Google Scholar
[11]
L. Savov, E. Volkova, and D. Janke, Copper and Tin in Steel Scrap Recycling, RMZ - Materials and Geoenvironment 50.3 (2003), p.627–640.
Google Scholar
[12]
X. Zhang and Z. Liu, Synergy effects of Cu and Sn on pitting corrosion resistance of ultra-purified medium chromium ferritic stainless steel, IOP Conference Series: Mater. Sci. and Engineering 182.1 (2017), p.012032.
DOI: 10.1088/1757-899x/182/1/012032
Google Scholar
[13]
Various, Key to Steels Paperback, German, Verlag Stahlschlüssel Wegst, Marbach/N., Germany, (2016).
Google Scholar
[14]
I. Daigo, L. Fujimura, H. Hayashi, E. Yamasue, S. Ohta, T.D. Huy, and Y. Goto, Quantifying the Total Amounts of Tramp Elements Associated with Carbon Steel Production in Japan, ISIJ Int. 57.2 (2017), p.388–393.
DOI: 10.2355/isijinternational.isijint-2016-500
Google Scholar
[15]
Entwicklung des Kupferpreises in den Jahren von 2000 bis 2017, German, Statista, Feb. 2018, https://de.statista.com/statistik/daten/studie/37791/umfrage/kupferpreis-seit-2000/ (visited on 03/06/2018).
Google Scholar
[16]
K.-I. Yamamoto, T. Toh, H. Hamatani, K. Tsunenari, K. Umetsu, Y. Maruki, S. Takeuchi, and Y. Yamada, Development of steel surface melting technology for improvement of hot shortness caused by tramp elements, Nippon Steel Technical Report 104 (2013), p.69–73.
Google Scholar
[17]
J.F. Elliot, M. Gleisner, and V. Ramakrishna, Thermochemistry for steelmaking, vol. 1, Pergamon Press, London, (1960).
Google Scholar
[18]
E. Hornbogen, Recycling: Materialwissenschaftliche Aspekte, German, 1st ed., Springer, Berlin, (1993).
Google Scholar
[19]
M.G. Frohberg, Thermodynamik für Metallurgen und Werkstofftechniker : E. Einf. German, 1st ed., Dt. Verl. für Grundstoffindustrie, Leipzig, (1981).
Google Scholar
[20]
Various, Treatise on Process Metallurgy. Process Fundamentals, ed. by S. Seetharaman, vol. 1, Elsevier, Amsterdam, (2014).
Google Scholar
[21]
M. Shamsuddin, Physical chemistry of metallurgical processes, 1st ed., Wiley, New York, (2016).
Google Scholar
[22]
Various, Treatise on Process Metallurgy. Process Phenomena, ed. by S. Seetharaman, vol. 2, Elsevier, Amsterdam, (2014).
Google Scholar
[23]
Various, Treatise on Process Metallurgy. Industrial Processes, Part A, ed. by S. Seetharaman, vol. 3A, Elsevier, Amsterdam, (2014).
Google Scholar
[24]
R. D'Haer et al., Recycling of Scrap for high-qualty Steel Products, Technical Steel Research - Primary Steelmaking - Report EUR 19468 EN, European Comission, Brussels, BE, 2001, 124 pp.
Google Scholar
[25]
R. Springer, Verfahren zur Entkupferung und Entmessingung von Eisen- und Stahlteilen, German, German Patent No. 910840, May 6, (1954).
Google Scholar
[26]
G. Kleinschmidt, Möglichkeiten zur Entfernung von Begleitelementen in Stahl, German, PhD thesis, Aachen: RWTH Aachen, (1997).
Google Scholar
[27]
L. Savov, Fundamental Study on the Evaporation of the solute Elements Copper and Tin from iron-based Melts at reduced Pressure, PhD thesis, TU Bergakademie Freiberg, (1999).
Google Scholar
[28]
J. Lee, Kupferproblematik beim Schrottschmelzen, German, PhD thesis, Aachen: RWTH Aachen, (1997).
Google Scholar
[29]
F. Oeters, Metallurgie der Stahlherstellung, German, Springer, Berlin and Heidelberg, (1989).
Google Scholar
[30]
V.M. Glazov, A.S. Pashinkin, and V.A. Fedorov, Phase equilibria in the Cu-Se system, Inorganic Materials 36.7 (July 2000), p.641–652.
DOI: 10.1007/bf02758413
Google Scholar
[31]
G. Bernardini, F. Corsini, G. Mazzetti, and R. Trosti-Ferroni, Phase relations in the CuFeSe system at 300 ◦C, Mater. Res. Bulletin 17.8 (1982), p.981–991.
DOI: 10.1016/0025-5408(82)90123-4
Google Scholar
[32]
L. Savov and D. Janke, Evaporation of Cu and Sn from Induction-stirred Iron-based Melts Treated at Reduced Pressure, ISIJ Int. 40.2 (2000), p.95–104.
DOI: 10.2355/isijinternational.40.95
Google Scholar
[33]
Various, Binary Alloy Phase Diagrams, ed. by T.B. Massalski, 2nd ed., ASM International, Materials Park, OH, (1990).
Google Scholar
[34]
K. Yamaguchi and Y. Takeda, Impurity Removal from Carbon Saturated Liquid Iron using Lead Solvent, Materials saction 44.12 (2003), p.2452–2455.
DOI: 10.2320/matertrans.44.2452
Google Scholar
[35]
K. Yamaguchi and H. Ono, Oxidative Removal of Cu from Carbon-saturated Iron via Ag Phase into B2O3 Flux, ISIJ Int. 52.1 (2012), p.18–25.
DOI: 10.2355/isijinternational.52.18
Google Scholar
[36]
A.I. Zaitsev, N.E. Zaitseva, E.K. Shakhpazov, and B.M. Mogutnov, Evaporation of Copper from Iron Melts, ISIJ Int. 44.4 (2004), p.639–646.
DOI: 10.2355/isijinternational.44.639
Google Scholar
[37]
L. Savov and D. Janke, Fundamentals of Sn and Cu Removal, Tech. Steel Res. - Primary Steelmaking - Rep. EUR 19468 EN, Recycling of Scrap for high-qualty Steel Products (2001), p.44–48.
Google Scholar
[38]
J. Łabaj, Kinetics of Copper Evaporation from the Fe-Cu Alloys Under Reduced Pressure, Englisch, Arch. Metall. Mater. Vol. 57, 2012, p.165–172.
DOI: 10.2478/v10172-012-0005-8
Google Scholar
[39]
S.-H. Jung, Y.-B. Kang, J.-D. Seo, and H.-G. Lee, Some Considerations of Copper Removal from Steel by Use of Oxysulfide Systems, Ninth International Conference on Molten Slags, Fluxes and Salts, Extended Abstracts, The Chinese Society for Metals, Beijing, China, May (2012).
Google Scholar
[40]
S.-H. Jung, Reaction mechanism and kinetics of evaporation of Cu and Sn from liquid steel, PhD thesis, Pohang University of Science and Technology (POSTECH), KR, (2014).
Google Scholar
[41]
L.-Y. Yan, L.-M. Pei, and G.-T. Li, Investigation on Copper Removal from Molten Steel in Vacuum, Chinese, trans. by G. Luan, Journ. Northeast. Univ. (Nat. Sci.) (Oct. 2003), p.942–944.
Google Scholar
[42]
L. Li, F. Wang, C. Xiang, S. Li, K. Lu, and S. Li, Decopperization in steel melt by gasification, Chinese, trans. by Q. Huang, Beijing Keji Daxue Xuebao 21.2 (1999), p.161–162.
Google Scholar
[43]
X. Hu, Z. Yan, P. Jiang, L. Zhu, K. Chou, H. Matsuura, and F. Tsukihashi, Removal of Copper from Molten Steel using FeO-SiO2-CaCl2 Flux, ISIJ Int. 53.5 (2013), p.920–922.
DOI: 10.2355/isijinternational.53.920
Google Scholar
[44]
G.K. Sigworth and J.F. Elliot, The Thermodynamics of Liquid Dilute Iron Alloys, Metal Science 8.1 (1974), p.298–310.
DOI: 10.1179/msc.1974.8.1.298
Google Scholar
[45]
C.W. Wagner, Thermodynamics of Alloys, Addison-Wesley, Santa Barbara, CA, (1952).
Google Scholar
[46]
M. Allibert, Slag atlas, with a forew. by D. Springorum, 2nd ed., Verlag Stahleisen, Düsseldorf, 1995, p.32, 35, 38, 57, 201–203, 616 pp.
Google Scholar
[47]
Various, Slagatlas – Version HotVeGas, vol. 11.0, GTT-Technologies, Herzogenrath, Nov. (2015).
Google Scholar
[48]
O. Reuleaux, Reaktionen und Gleichgewichte im System Cu-Fe-S mit besonderer Berücksichtigung des Kupferseins, German, Metall und Erz 24.5 (1927).
Google Scholar
[49]
H. Schlegel and A. Schüller, Die Schmelz- und Kristallisationsgleichgewichte im System Kupfer – Eisen – Schwefel und ihre Bedeutung für die Kupfergewinnung, German, Akademie-Verl., Berlin, (1952).
Google Scholar
[50]
E. Schürmann, Die Auswirkungen von Entmischungserscheinungen auf Metall-Schlacken- Gleichgewichte, untersucht im System Eisen-Kupfer-Aluminium-Schwefel bei Gegenwart von Kohlenstoff, German, Dissertation, Bergakademie Clausthal, 1953, p.128–137.
Google Scholar
[51]
C. Wang, J. Hirama, T. Nagasaka, and S. Ban-Ya, Phase Equilibria of Liquid Fe-S-C Ternary System, ISIJ Int. 31.11 (1991), p.1292–1299.
DOI: 10.2355/isijinternational.31.1292
Google Scholar
[52]
P. Walder and A.D. Pelton, Thermodynamic modeling of the Fe-S system, J. Phase Equilib. Diffus. 26.1 (Feb. 2005), p.23–38.
Google Scholar
[53]
L. Voisin and K. Itagaki, Phase Relations, Activities and Minor Element Distribution in Cu-Fe-S and Cu-Fe-S-As Systems Saturated with Carbon at 1473 K, Mater. Sci. 47 (12 Dec. 2006), p.2963–2971.
DOI: 10.2320/matertrans.47.2963
Google Scholar
[54]
S.-X. Guo, J.-J. Wang, L. Zhou, Y.-Q. Liu, and H.-P. Liu, Decopperization of liquid steel by FeSNa2S flux, Chinese, trans. by Q. Huang, Journ. of Iron and Steel Res. (Chinese Edition) 20.10 (2008), p.9–12.
Google Scholar
[55]
R. Shimpo, Y. Fukaya, T. Ishikawa, and O. Ogawa, Copper Removal from Carbon-Saturated Molten Iron with Al2S3-FeS Flux, Metallurgical and Mater. s. B 28B (1997), p.1029–1037.
DOI: 10.1007/s11663-997-0057-8
Google Scholar
[56]
Y. Uchida, A. Matsui, Y. Kishimoto, and Y. Miki, Fundamental Investigation on Removal of Copper from Molten Iron with Na2CO3-FeS Fluxes, ISIJ Int. 55.8 (2015), p.1549–1557.
DOI: 10.2355/isijinternational.isijint-2014-776
Google Scholar
[57]
J. Wang, S. Guo, L. Zhou, and Q. Li, Slag for Decopperization and Sulphur Control in Molten Steel, Journ. of Iron and Steel Res. Int. 2nd ser. 16 (Mar. 2009), p.17–21.
DOI: 10.1016/s1006-706x(09)60021-2
Google Scholar
[58]
C. Wang, T. Nagasaka, M. Hino, and S. Ban-Ya, Copper Distribution between Molten FeSNaS0: 5 Flux and Carbon Saturated Iron Melt, ISIJ Int. 31.11 (1991), p.1300–1308.
DOI: 10.2355/isijinternational.31.1300
Google Scholar
[59]
C. Wang, T. Nagasaka, M. Hino, and S. Ban-Ya, Copper Distribution between FeS-Alkaline or- Alkaline Earth Metal Sulfide Fluxes and Carbon Saturated Iron Melt, ISIJ Int. 31.11 (1991), p.1309–1315.
DOI: 10.2355/isijinternational.31.1309
Google Scholar
[60]
A. Cohen and M. Blander, Removal of copper from carbon-saturated iron with an aluminum sulfide/ferrous sulfide flux, Metallurgical and Mater. Trans. B 29.2 (Apr. 1998), p.493–495.
DOI: 10.1007/s11663-998-0129-4
Google Scholar
[61]
J. Naidich, The Wettability of Solids by Liquid Metals, Progress in Surface and Membrane Science, ed. by D. Cadenhead and J. Danielli, vol. 14, Supplement C, Elsevier, 1981, p.353–484.
DOI: 10.1016/b978-0-12-571814-1.50011-7
Google Scholar
[62]
P.R. Chidambaram, G.R. Edwards, and D.L. Olson, A thermodynamic criterion to predict wettability at metal-alumina interfaces, Metall. Trans. B 23.2 (Mar. 1992), p.215–222.
DOI: 10.1007/bf02651856
Google Scholar
[63]
D. Sotiropoulou and P. Nikolopoulos, Work of adhesion in ZrO2-liquid metal systems, Journ. of Materials Science 28.2 (Jan. 1993), p.356–360.
DOI: 10.1007/bf00357807
Google Scholar
[64]
N. Eustathopoulos, D. Chatain, and L. Coudurier, Wetting and interfacial chemistry in liquid metal-ceramic systems, Mater. Sci. and Engineering: A 135.Supplement C (1991), p.83–88.
DOI: 10.1016/0921-5093(91)90541-t
Google Scholar
[65]
C. Xiang, L. Li, C. Wang, H. Tian, and S. Li, Decopperization in steel melt with compound decopperizing agents of oxides, Chinese, trans. by Q. Huang, Journ. of University of Science and Technology Beijing 19.6 (1997), p.538–541.
Google Scholar
[66]
L. Li, C. Xiang, Z. Pei, C. Wang, H. Tian, and S. Li, Decopperization in steel melt through filtration, Chinese, trans. by Q. Huang, Journ. of Iron and Steel Res. (Chinese Edition) 10.3 (1998), p.5–7.
Google Scholar
[67]
L. Li, C. Xiang, S. Li, J. Cao, Y. Lai, and Y. Chen, Synthesis of zinc aluminum oxide spinel, Beijing Keji Daxue Xuebao 22.1 (2000), p.23–25.
Google Scholar
[68]
S.-Q. Li, B.-J. Yu, S.-Q. Li, and L.-S. Li, Exploration on Decoppering of Molten Steel by Filtering, Engineering Chemistry and Metallurgy 21.5 (Mar. 2000), p.314–317.
Google Scholar
[69]
Y.G. Kim, I.J. Kim, J.S. Kim, Y.I. Chung, and D.Y. Choi, Evaluation of Surface Crack in Resistance Spot Welds of Zn-Coated Steel, Mater. Trans. 55.1 (2014), p.171–175.
DOI: 10.2320/matertrans.m2013244
Google Scholar
[70]
Z.-i. Morita, Y. Ogino, H. Kaito, and A. Adachi, On the Structural Change of Liquid Iron Detected from Density Measurement, J. Jpn. Inst. Met. 34.2 (1970), p.248–253.
Google Scholar
[71]
E. Storti, S. Dudczig, M. Emmel, P. Colombo, and C.G. Aneziris, Functional Coatings on Carbon- Bonded Ceramic Foam Filters for Steel Melt Filtration, steel research international 87.8 (2016), p.1030–1037.
DOI: 10.1002/srin.201500446
Google Scholar
[72]
steelcast.ru – Directory, Steel Smelting and Casting Data, Russian, 2009, http://steelcast.ru/spravochnik1 (visited on 02/23/2018).
Google Scholar
[73]
Y.P. Snitko, Y.N. Stern, and N.P. Ljakishev, Reports of the USSR Academy of Sciences 268.5 (1983), p.115–117.
Google Scholar
[74]
X. Lu and Z. Jin, Thermodynamic assessment of the BaO-TiO2 quasibinary system, Calphad 24.3 (2000), p.319–338.
DOI: 10.1016/s0364-5916(01)00008-6
Google Scholar
[75]
A. Jungreithmeier, A. Viertauer, K. Jandl, H. Preßlinger, and H. Hiebler, Behaviour of trace and accompanying elements in liquid steel during RH-treatment, Scaninject, International Conference on Refining Processes, 7b, MEFOS, Lulea, 1995, p.27–66.
Google Scholar