Adsorptive CuO/CuAl2O4 Nanoparticles for the Separation of Aqueous Methyl Orange

Article Preview

Abstract:

A simple method for the separation of aqueous methyl orange, an azo dye, is reported, where CuO/CuAl2O4 nanoparticles synthesisedby co-precipitation methodwere used as the adsorbent. The presence of cubic CuAl2O4 (CAO) and monoclinic CuO phase of this composite material was confirmed by X-Ray diffraction and its specific surface area wasdetermined by BET nitrogen adsorption method.To study the nature of surface charge, theisoelectric point of the material was determined using the pH drift methodfollowing which the rate of decolouration was studied forpH 5and pH 7. Theexperiments in the absence oflight show that adsorption of the dye is prevalent even up to 6h leading to 86% decolouration.A methanolic extraction was effectivefor quantitative separation ofadsorbed dye fromCuO/CuAl2O4 nanoparticles regenerating them for reuse. The presence of methyl orange in the extracted solution and on the nanoparticles at various stages was verified byUV-Visible and FT-IR spectroscopic methods.The extent of adsorption was quantified and found tobe as high as 86%. The catalyst aftercomplete extraction ofmethyl orange (MO),could be reused for the decolouration. Stability of the nanoparticles after reuse was verified by the closematch of XRD patterns ofthe pure and reused CAOwhich show no significant changes in itscrystal structure. The separation method shown here can be extended for the removal of other azo dyesfrom textile effluents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-32

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.A. Terry, Water pollution, Environ. Law. Prac, 4 (1996) 19-29.

Google Scholar

[2] M. Richman, Water pollution', Wastewater, 5 (1997) 24-29.

Google Scholar

[3] K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2, Polish Journal of Environmental Studies, 19 (2010) 685-691.

Google Scholar

[4] D. Mukherjee, Development of a novel TiO2-polymeric film photocatalyst for water purification both under UV and solar Illuminations, in, The University of Western Ontario.

Google Scholar

[5] C. -H. Chiou, C. -Y. Wu, R. -S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process, Chemical Engineering Journal, 139 (2008) 322-329.

DOI: 10.1016/j.cej.2007.08.002

Google Scholar

[6] F. Akbal, A.N. Onar, Photocatalytic degradation of phenol, Environmental monitoring and assessment, 83 (2003) 295-302.

Google Scholar

[7] S. Song, H. Ying, Z. He, J. Chen, Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis, Chemosphere, 66 (2007) 1782-1788.

DOI: 10.1016/j.chemosphere.2006.07.090

Google Scholar

[8] M. Khadhraoui, H. Trabelsi, M. Ksibi, S. Bouguerra, B. Elleuch, Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse, Journal of Hazardous Materials, 161 (2009) 974-981.

DOI: 10.1016/j.jhazmat.2008.04.060

Google Scholar

[9] M.N. Chong, B. Jin, C.W. Chow, C.P. Saint, A new approach to optimise an annular slurry photoreactor system for the degradation of Congo Red: Statistical analysis and modelling, Chemical Engineering Journal, 152 (2009) 158-166.

DOI: 10.1016/j.cej.2009.04.027

Google Scholar

[10] S. Avlonitis, I. Poulios, D. Sotiriou, M. Pappas, K. Moutesidis, Simulated cotton dye effluents treatment and reuse by nanofiltration, Desalination, 221 (2008) 259-267.

DOI: 10.1016/j.desal.2007.01.082

Google Scholar

[11] Q. Yue, B. Gao, Y. Wang, H. Zhang, X. Sun, S. Wang, R.R. Gu, Synthesis of polyamine flocculants and their potential use in treating dye wastewater, Journal of Hazardous Materials, 152 (2008) 221-227.

DOI: 10.1016/j.jhazmat.2007.06.089

Google Scholar

[12] Y.L. Song, J.T. Li, H. Chen, Degradation of CI Acid Red 88 aqueous solution by combination of Fenton's reagent and ultrasound irradiation, Journal of chemical technology and biotechnology, 84 (2009) 578-583.

DOI: 10.1002/jctb.2083

Google Scholar

[13] G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresource technology, 97 (2006) 1061-1085.

DOI: 10.1016/j.biortech.2005.05.001

Google Scholar

[14] K. Rita, Adsorption of dye eosin from an aqueous solution on two different samples of activated carbon by static batch method, Journal of Water Resource and Protection, 2012 (2012).

DOI: 10.4236/jwarp.2012.42011

Google Scholar

[15] A. Dąbrowski, Adsorption—from theory to practice, Advances in colloid and interface science, 93 (2001) 135-224.

DOI: 10.1016/s0001-8686(00)00082-8

Google Scholar

[16] A. Ahmad, M. Rafatullah, M. Danish, Removal of Zn (II) and Cd (II) ions from aqueous solutions using treated sawdust of sissoo wood as an adsorbent, Holz als Roh-und Werkstoff, 65 (2007) 429-436.

DOI: 10.1007/s00107-007-0175-7

Google Scholar

[17] A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, Y.Y. Chii, B.M. Siddique, Removal of Cu (II) and Pb (II) ions from aqueous solutions by adsorption on sawdust of Meranti wood, Desalination, 247 (2009) 636-646.

DOI: 10.1016/j.desal.2009.01.007

Google Scholar

[18] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust, Journal of Hazardous Materials, 170 (2009) 969-977.

DOI: 10.1016/j.jhazmat.2009.05.066

Google Scholar

[19] H. Ali, Biodegradation of synthetic dyes—a review, Water, Air, & Soil Pollution, 213 (2010) 251-273.

DOI: 10.1007/s11270-010-0382-4

Google Scholar

[20] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280 (2011) 1-13.

DOI: 10.1016/j.desal.2011.07.019

Google Scholar

[21] P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes and pigments, 56 (2003) 239-249.

DOI: 10.1016/s0143-7208(02)00159-6

Google Scholar

[22] K.V. Kumar, V. Ramamurthi, S. Sivanesan, Modeling the mechanism involved during the sorption of methylene blue onto fly ash, Journal of Colloid and Interface Science, 284 (2005) 14-21.

DOI: 10.1016/j.jcis.2004.09.063

Google Scholar

[23] W. Cheah, S. Hosseini, M.A. Khan, T. Chuah, T.S. Choong, Acid modified carbon coated monolith for methyl orange adsorption, Chemical Engineering Journal, 215 (2013) 747-754.

DOI: 10.1016/j.cej.2012.07.004

Google Scholar

[24] T. Kou, Y. Wang, C. Zhang, J. Sun, Z. Zhang, Adsorption behavior of methyl orange onto nanoporous core–shell Cu@ Cu 2 O nanocomposite, Chemical Engineering Journal, 223 (2013) 76-83.

DOI: 10.1016/j.cej.2013.03.013

Google Scholar

[25] C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold, Journal of the American Chemical Society, 129 (2007) 42-43.

DOI: 10.1021/ja0675503

Google Scholar

[26] Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian, Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al− Cu alloys, The Journal of Physical Chemistry C, 113 (2009) 6694-6698.

DOI: 10.1021/jp810742z

Google Scholar

[27] Y. Ding, M. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, Journal of the American Chemical Society, 126 (2004) 6876-6877.

DOI: 10.1021/ja0320119

Google Scholar

[28] U. Kameswari, C. Pillai, Reaction of piperidine with formaldehyde over alumina and spinel aluminates, Catalysis letters, 38 (1996) 53-56.

DOI: 10.1007/bf00806899

Google Scholar

[29] W. -z. Lv, B. Liu, Z. -k. Luo, X. -z. Ren, P. -x. Zhang, XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method, Journal of Alloys and Compounds, 465 (2008) 261-264.

DOI: 10.1016/j.jallcom.2007.10.049

Google Scholar

[30] Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: An important environmental engineering material, Journal of Environmental Sciences, 26 (2014) 2139-2177.

DOI: 10.1016/j.jes.2014.09.023

Google Scholar

[31] J. Yanyan, L. Jinggang, S. Xiaotao, N. Guiling, W. Chengyu, G. Xiumei, CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation, Journal of Sol-Gel Science and Technology, 42 (2007) 41-45.

DOI: 10.1007/s10971-006-1525-3

Google Scholar

[32] A.B. Ghomi, V. Ashayeri, Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions, Iranian Journal of Catalysis, 2 (2012) 135-140.

Google Scholar

[33] Y. Jianhui, Z. Li, L. Xiaoyan, Z. Xiuxiu, D. Chaohua, Preparation and Photocatalytic Properties of ZnO/CuO/ZnAl2O4 Composite Hollow Microspheres by One-Pot Method, Chemical Science Review and Letters, 3(12) 2014 1080-1090.

Google Scholar

[34] V. Belessi, G. Romanos, N. Boukos, D. Lambropoulou, C. Trapalis, Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles, Journal of hazardous materials, 170 (2009) 836-844.

DOI: 10.1016/j.jhazmat.2009.05.045

Google Scholar

[35] S. Asuha, X. Zhou, S. Zhao, Adsorption of methyl orange and Cr (VI) on mesoporous TiO2 prepared by hydrothermal method, Journal of hazardous materials, 181 (2010) 204-210.

DOI: 10.1016/j.jhazmat.2010.04.117

Google Scholar

[36] S. -Y. Mak, D. -H. Chen, Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles, Dyes and Pigments, 61 (2004) 93-98.

DOI: 10.1016/j.dyepig.2003.10.008

Google Scholar

[37] M. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon, 37 (1999) 1215-1221.

DOI: 10.1016/s0008-6223(98)00317-0

Google Scholar

[38] W. Lv, B. Liu, Q. Qiu, F. Wang, Z. Luo, P. Zhang, S. Wei, Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method, Journal of alloys and compounds, 479 (2009) 480-483.

DOI: 10.1016/j.jallcom.2008.12.111

Google Scholar

[39] M. Naderi, A. Shamirian, M. Edrisi, Synthesis, characterization and photocatalytic properties of nanoparticles CuAl2O4 by Pechini method using Taguchi statistical design, Journal of Sol-Gel Science and Technology, 58 557-563.

DOI: 10.1007/s10971-011-2427-6

Google Scholar

[40] M. Salavati-Niasari, F. Davar, M. Farhadi, Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol-gel method, Journal of Sol-Gel Science and Technology, 51 (2009) 48-52.

DOI: 10.1007/s10971-009-1940-3

Google Scholar

[41] J. Chandradass, K.H. Kim, Synthesis And Characterisation Of CuAl2O4 Nanoparticles Via A Reverse Microemulsion Method, Journal of Ceramic Processing Research, 11 (2010) 150-153.

Google Scholar

[42] C.G. Anchieta, E.C. Severo, C. Rigo, M.A. Mazutti, R.C. Kuhn, E.I. Muller, E.M. Flores, R.F. Moreira, E.L. Foletto, Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction, Materials Chemistry and Physics, 160 (2015).

DOI: 10.1016/j.matchemphys.2015.04.016

Google Scholar

[43] C. Chen, J. Liu, P. Liu, B. Yu, Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO catalysts, Advances in Chemical Engineering and Science, 1 (2011) 9.

DOI: 10.4236/aces.2011.11002

Google Scholar

[44] J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method, Physica B: Condensed Matter.

DOI: 10.1016/j.physb.2013.02.005

Google Scholar

[45] E.M. Saggioro, A.S. Oliveira, T. Pavesi, C. t.G. Maia, L.F.V. Ferreira, J.C. Moreira, Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes, Molecules, 16 10370-10386.

DOI: 10.3390/molecules161210370

Google Scholar

[46] S. Adhikari, D. Sarkar, G. Madras, Highly efficient WO 3–ZnO mixed oxides for photocatalysis, RSC Advances, 5 (2015) 11895-11904.

DOI: 10.1039/c4ra13210f

Google Scholar