[1]
L.A. Terry, Water pollution, Environ. Law. Prac, 4 (1996) 19-29.
Google Scholar
[2]
M. Richman, Water pollution', Wastewater, 5 (1997) 24-29.
Google Scholar
[3]
K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2, Polish Journal of Environmental Studies, 19 (2010) 685-691.
Google Scholar
[4]
D. Mukherjee, Development of a novel TiO2-polymeric film photocatalyst for water purification both under UV and solar Illuminations, in, The University of Western Ontario.
Google Scholar
[5]
C. -H. Chiou, C. -Y. Wu, R. -S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process, Chemical Engineering Journal, 139 (2008) 322-329.
DOI: 10.1016/j.cej.2007.08.002
Google Scholar
[6]
F. Akbal, A.N. Onar, Photocatalytic degradation of phenol, Environmental monitoring and assessment, 83 (2003) 295-302.
Google Scholar
[7]
S. Song, H. Ying, Z. He, J. Chen, Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis, Chemosphere, 66 (2007) 1782-1788.
DOI: 10.1016/j.chemosphere.2006.07.090
Google Scholar
[8]
M. Khadhraoui, H. Trabelsi, M. Ksibi, S. Bouguerra, B. Elleuch, Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse, Journal of Hazardous Materials, 161 (2009) 974-981.
DOI: 10.1016/j.jhazmat.2008.04.060
Google Scholar
[9]
M.N. Chong, B. Jin, C.W. Chow, C.P. Saint, A new approach to optimise an annular slurry photoreactor system for the degradation of Congo Red: Statistical analysis and modelling, Chemical Engineering Journal, 152 (2009) 158-166.
DOI: 10.1016/j.cej.2009.04.027
Google Scholar
[10]
S. Avlonitis, I. Poulios, D. Sotiriou, M. Pappas, K. Moutesidis, Simulated cotton dye effluents treatment and reuse by nanofiltration, Desalination, 221 (2008) 259-267.
DOI: 10.1016/j.desal.2007.01.082
Google Scholar
[11]
Q. Yue, B. Gao, Y. Wang, H. Zhang, X. Sun, S. Wang, R.R. Gu, Synthesis of polyamine flocculants and their potential use in treating dye wastewater, Journal of Hazardous Materials, 152 (2008) 221-227.
DOI: 10.1016/j.jhazmat.2007.06.089
Google Scholar
[12]
Y.L. Song, J.T. Li, H. Chen, Degradation of CI Acid Red 88 aqueous solution by combination of Fenton's reagent and ultrasound irradiation, Journal of chemical technology and biotechnology, 84 (2009) 578-583.
DOI: 10.1002/jctb.2083
Google Scholar
[13]
G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresource technology, 97 (2006) 1061-1085.
DOI: 10.1016/j.biortech.2005.05.001
Google Scholar
[14]
K. Rita, Adsorption of dye eosin from an aqueous solution on two different samples of activated carbon by static batch method, Journal of Water Resource and Protection, 2012 (2012).
DOI: 10.4236/jwarp.2012.42011
Google Scholar
[15]
A. Dąbrowski, Adsorption—from theory to practice, Advances in colloid and interface science, 93 (2001) 135-224.
DOI: 10.1016/s0001-8686(00)00082-8
Google Scholar
[16]
A. Ahmad, M. Rafatullah, M. Danish, Removal of Zn (II) and Cd (II) ions from aqueous solutions using treated sawdust of sissoo wood as an adsorbent, Holz als Roh-und Werkstoff, 65 (2007) 429-436.
DOI: 10.1007/s00107-007-0175-7
Google Scholar
[17]
A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, Y.Y. Chii, B.M. Siddique, Removal of Cu (II) and Pb (II) ions from aqueous solutions by adsorption on sawdust of Meranti wood, Desalination, 247 (2009) 636-646.
DOI: 10.1016/j.desal.2009.01.007
Google Scholar
[18]
M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust, Journal of Hazardous Materials, 170 (2009) 969-977.
DOI: 10.1016/j.jhazmat.2009.05.066
Google Scholar
[19]
H. Ali, Biodegradation of synthetic dyes—a review, Water, Air, & Soil Pollution, 213 (2010) 251-273.
DOI: 10.1007/s11270-010-0382-4
Google Scholar
[20]
M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280 (2011) 1-13.
DOI: 10.1016/j.desal.2011.07.019
Google Scholar
[21]
P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes and pigments, 56 (2003) 239-249.
DOI: 10.1016/s0143-7208(02)00159-6
Google Scholar
[22]
K.V. Kumar, V. Ramamurthi, S. Sivanesan, Modeling the mechanism involved during the sorption of methylene blue onto fly ash, Journal of Colloid and Interface Science, 284 (2005) 14-21.
DOI: 10.1016/j.jcis.2004.09.063
Google Scholar
[23]
W. Cheah, S. Hosseini, M.A. Khan, T. Chuah, T.S. Choong, Acid modified carbon coated monolith for methyl orange adsorption, Chemical Engineering Journal, 215 (2013) 747-754.
DOI: 10.1016/j.cej.2012.07.004
Google Scholar
[24]
T. Kou, Y. Wang, C. Zhang, J. Sun, Z. Zhang, Adsorption behavior of methyl orange onto nanoporous core–shell Cu@ Cu 2 O nanocomposite, Chemical Engineering Journal, 223 (2013) 76-83.
DOI: 10.1016/j.cej.2013.03.013
Google Scholar
[25]
C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold, Journal of the American Chemical Society, 129 (2007) 42-43.
DOI: 10.1021/ja0675503
Google Scholar
[26]
Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian, Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al− Cu alloys, The Journal of Physical Chemistry C, 113 (2009) 6694-6698.
DOI: 10.1021/jp810742z
Google Scholar
[27]
Y. Ding, M. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, Journal of the American Chemical Society, 126 (2004) 6876-6877.
DOI: 10.1021/ja0320119
Google Scholar
[28]
U. Kameswari, C. Pillai, Reaction of piperidine with formaldehyde over alumina and spinel aluminates, Catalysis letters, 38 (1996) 53-56.
DOI: 10.1007/bf00806899
Google Scholar
[29]
W. -z. Lv, B. Liu, Z. -k. Luo, X. -z. Ren, P. -x. Zhang, XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method, Journal of Alloys and Compounds, 465 (2008) 261-264.
DOI: 10.1016/j.jallcom.2007.10.049
Google Scholar
[30]
Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: An important environmental engineering material, Journal of Environmental Sciences, 26 (2014) 2139-2177.
DOI: 10.1016/j.jes.2014.09.023
Google Scholar
[31]
J. Yanyan, L. Jinggang, S. Xiaotao, N. Guiling, W. Chengyu, G. Xiumei, CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation, Journal of Sol-Gel Science and Technology, 42 (2007) 41-45.
DOI: 10.1007/s10971-006-1525-3
Google Scholar
[32]
A.B. Ghomi, V. Ashayeri, Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions, Iranian Journal of Catalysis, 2 (2012) 135-140.
Google Scholar
[33]
Y. Jianhui, Z. Li, L. Xiaoyan, Z. Xiuxiu, D. Chaohua, Preparation and Photocatalytic Properties of ZnO/CuO/ZnAl2O4 Composite Hollow Microspheres by One-Pot Method, Chemical Science Review and Letters, 3(12) 2014 1080-1090.
Google Scholar
[34]
V. Belessi, G. Romanos, N. Boukos, D. Lambropoulou, C. Trapalis, Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles, Journal of hazardous materials, 170 (2009) 836-844.
DOI: 10.1016/j.jhazmat.2009.05.045
Google Scholar
[35]
S. Asuha, X. Zhou, S. Zhao, Adsorption of methyl orange and Cr (VI) on mesoporous TiO2 prepared by hydrothermal method, Journal of hazardous materials, 181 (2010) 204-210.
DOI: 10.1016/j.jhazmat.2010.04.117
Google Scholar
[36]
S. -Y. Mak, D. -H. Chen, Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles, Dyes and Pigments, 61 (2004) 93-98.
DOI: 10.1016/j.dyepig.2003.10.008
Google Scholar
[37]
M. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon, 37 (1999) 1215-1221.
DOI: 10.1016/s0008-6223(98)00317-0
Google Scholar
[38]
W. Lv, B. Liu, Q. Qiu, F. Wang, Z. Luo, P. Zhang, S. Wei, Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method, Journal of alloys and compounds, 479 (2009) 480-483.
DOI: 10.1016/j.jallcom.2008.12.111
Google Scholar
[39]
M. Naderi, A. Shamirian, M. Edrisi, Synthesis, characterization and photocatalytic properties of nanoparticles CuAl2O4 by Pechini method using Taguchi statistical design, Journal of Sol-Gel Science and Technology, 58 557-563.
DOI: 10.1007/s10971-011-2427-6
Google Scholar
[40]
M. Salavati-Niasari, F. Davar, M. Farhadi, Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol-gel method, Journal of Sol-Gel Science and Technology, 51 (2009) 48-52.
DOI: 10.1007/s10971-009-1940-3
Google Scholar
[41]
J. Chandradass, K.H. Kim, Synthesis And Characterisation Of CuAl2O4 Nanoparticles Via A Reverse Microemulsion Method, Journal of Ceramic Processing Research, 11 (2010) 150-153.
Google Scholar
[42]
C.G. Anchieta, E.C. Severo, C. Rigo, M.A. Mazutti, R.C. Kuhn, E.I. Muller, E.M. Flores, R.F. Moreira, E.L. Foletto, Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction, Materials Chemistry and Physics, 160 (2015).
DOI: 10.1016/j.matchemphys.2015.04.016
Google Scholar
[43]
C. Chen, J. Liu, P. Liu, B. Yu, Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO catalysts, Advances in Chemical Engineering and Science, 1 (2011) 9.
DOI: 10.4236/aces.2011.11002
Google Scholar
[44]
J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method, Physica B: Condensed Matter.
DOI: 10.1016/j.physb.2013.02.005
Google Scholar
[45]
E.M. Saggioro, A.S. Oliveira, T. Pavesi, C. t.G. Maia, L.F.V. Ferreira, J.C. Moreira, Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes, Molecules, 16 10370-10386.
DOI: 10.3390/molecules161210370
Google Scholar
[46]
S. Adhikari, D. Sarkar, G. Madras, Highly efficient WO 3–ZnO mixed oxides for photocatalysis, RSC Advances, 5 (2015) 11895-11904.
DOI: 10.1039/c4ra13210f
Google Scholar